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Do or do not – there is no try

(Yoda, The Empire Strikes Back)



Preface

This book deals with combinatorial aspects of epistasis, a notion that existed for

years in genetics and appeared in the field of evolutionary algorithms in the early

1990s. Even though the first chapter puts epistasis in the perspective of evolutionary

algorithms and artificial intelligence, and applications occasionally pop up in other

chapters, this book is essentially about mathematics, about combinatorial techniques

to compute in an efficient and mathematically elegant way what will be defined as

normalized epistasis. Some of the material in this book finds its origin in the PhD

theses of Hugo Van Hove [97] and Dominique Suys [95]. The sixth chapter also

contains material that appeared in the dissertation of Luk Schoofs [84]. Together

with that of M. Teresa Iglesias [36], these dissertations form the backbone of a

decade of mathematical ventures in the world of epistasis.

The authors wish to acknowledge support from the Flemish Fund of Scientific re-

search (FWO-Vlaanderen) and of the Xunta de Galicia. They also wish to explicitly

mention the intellectual and moral support they received throughout the preparation

of this work from their family and their colleagues Emilio Villanueva, Jose Maŕ a

Barja and Arnold Beckelheimer, as well as our local TETT Xpert Jan Adriaenssens.EE
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Chapter O

Genetic algorithms: a guide for

absolute beginners

In this preliminary chapter, we will describe in an intuitive way what genetic al-

gorithms are about, referring to the literature (and the rest of this book) for details.

This chapter (which, at some point, we intended to call “Genetic algorithms for dum-

mies”) is written and included for readers for whom the term “genetic algorithm”

is completely new. Readers with some basic background may skip it and start

immediately with Chapter I.

Every day, one is almost continuously confronted with questions of the type: “What

is the best way to ...?”, “What is the shortest way to go to ...?”, “What is the

cheapest ...?”. All of these questions are examples of so-called optimization problems,

i.e., one is given a set of data, of possible solutions of a given problem, and one is

asked to find the “best” solution within this “search space”. In order to make sense,

there should, of course, be some way to measure this idea of “best”: every item

in the search space, every possible solution to the given problem should be given

a value, and one should be looking for elements in the search space for which this

value is maximal (or minimal, depending on the problem).

Formally, one may thus think of an optimization problem to be represented as

follows. First, one is given a set Ω of possible solutions, of data to be optimized. This

set Ω may be very general, finite or infinite, but in general it consists of numbers,
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of vectors, of paths from one city to another, graphs, or whatever type of object

one wants to study. Next, there is given some function f which associates with

every object in Ω a value, which expresses its quality with respect to the problem

one wishes to solve. This value could be the price of some product, the distance

covered by traveling from one city to another, . . . Although any set of values could

do, in practice one prefers to work with real values, i.e., we work with a function

f : Ω → R. The function f is usually referred to as fitness function or objective

function.

The associated optimization problem may then be formulated as follows: find the

element(s) s ∈ Ω, for which f(s) is minimal (or maximal).

Let us already point out here that there is no real restriction in limiting ourselves

to maxima: if we define g : Ω → R by letting g(s) = −f(s) for every s ∈ Ω, then,

clearly, f reaches its minimal values exactly where g reaches its maximal values.

Finding the minimum for f is thus just the same as finding the maximum for g.

Moreover, for practical reasons, one usually assumes the fitness function to only

have positive values – if necessary, one may always add a constant to realize this.

So, how does one proceed to find a maximum (or minimum) for f : Ω → R? If Ω

is a subset of n-dimensional real space Rn, high school mathematics is very clear

about this: just try and find s ∈ Ω such that

∂f

∂x1

(s) = . . . =
∂f

∂xn

(s) = 0 (*)

Well, of course, one has to impose some conditions on Ω, e.g., Ω has to be an open

subset of the space Rn. But that is not the real point – just do not believe everything

your maths teacher taught you:

1. calculating partial derivatives looks fine, but has it ever occurred to you that

most functions one may want to optimize in real life do not have derivatives?

That they are usually even not continuous? And that the search space is

almost always discrete or finite?

2. and even if the partial derivatives exist, the resulting equations (*) will prob-

ably look ugly, if not horrible, i.e., they may be extremely hard to solve, even
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local optimum m

global optimum M

Figure O.1: A local and a global optimum.

numerically. (For example, in one variable, just look at the function f(x) =

x2 +exp (cos x)+x, which leads to the equation 2x− sin x exp (cos x)+1 = 0).

3. and even when (if!) we find a solution, are we certain that we are not stuck

in a local optimum? (See figure O.1.)

Fortunately, there are alternative search methods to find the optimum, e.g., so-

called gradient methods. One of these is what one uses to refer to as hill-climbing.

Roughly speaking, this method starts from a random point in search space and

iteratively moves to points with a higher fitness value, or in the steepest direction in

the neighborhood of this point, until one reaches an optimal value. But again, how

can we be certain that we do not get stuck in a local optimum? (See figure O.2.)

Of course, in real life, our search space is, indeed, always finite (albeit sometimes

very big), so that we definitely need other methods.

For small search spaces, we might try an exhaustive search. For small, really small

spaces, this clearly works, but again, unless we do restrict to “toy problems”, this

approach definitely does not work.

Let us give an example. The so-called Traveling Salesman Problem is a classic in

optimization theory and may be formulated as follows. Given a set of N cities and

their mutual distances, starting from a fixed city, try and find a way to visit each of
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m

M

Figure O.2: Stuck in a local optimum.

these cities once and such that the total distance covered is minimal.

If we do this for N = 5 cities, we have to compare 4! = 24 different circuits, and

it is easy to find the shortest one amongst these. But who is interested in only

5 cities? If we look at a somewhat less silly situation, say N = 100 cities to be

visited, exhaustive search leads to comparing 99! ≈ 10156 travel lengths. Taking into

account that the total number of atoms in our universe is of the order of 1078, it

should be obvious that no computer will ever be able to solve the problem of finding

the shortest circuit in this case.

Fortunately, for this type of problem, excellent heuristics have been developed, lead-

ing to excellent sub-optimal solutions in a reasonable time.

Random search then? If people keep buying lottery tickets (and even win, now and

then), why not try this approach in optimization? Why not pick sample points and

check whether one is lucky? Again, it is obvious that this will not work, unless one

works with very small search spaces or if one is willing to wait for a long, long time

before finding a reasonable solution. And even then, how can one be certain to be

even close to an optimum or local optimum?

What appears to be the case is that for specific, individual problems one may be

given an algorithm, frequently highly problem-dependent, that leads to reasonable

solutions. Moreover, for really hard problems, it appears that a probabilistic ap-
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a

b c

d

e

a

b c

d

e

Figure O.3: Five cities, and one possible way of visiting each city once.

proach is sometimes very useful. By “probabilistic”, we, of course, do not mean

“random search” (as indicated above), but rather a guided random search, i.e., a

deterministic search algorithm, that uses some aspects of randomization in its ini-

tialization or in directing its search path.

Several “universal” algorithms of this type have been developed and studied during

the last decades, amongst them simulated annealing (which, by the way, yields nice

results for the traveling salesman problem) and the so-called genetic algorithm(s),

which will be studied extensively below.

Genetic algorithms are inspired by nature, by evolution and Mendel’s ideas about

this.

The underlying idea is extremely simple. Let us consider a population P of prey, with

characteristics making them more or less likely to be eaten by predators surrounding

them. These characteristics may involve speed, mimicry or even intelligence. Let us

suppose that we can describe these features that permits an individual p to survive

by some “fitness function” f : P → R, i.e., the higher the value of f(p), the higher

the probability of survival of p ∈ P . The population P is, of course, not static, it

evolves in time: some prey is eaten, there is some breeding, . . . For obvious reasons,

one expects the prey with high fitness f(p) to eventually dominate the population

P : individually they have more chances of surviving (and thus of breeding!) and

one may expect that strong, fit parents (with high f !) produce strong offspring.

Of course, this is just theory: some weak animals (with low f !) may survive by

chance and offspring of strong parents could still be relatively weak. Moreover,

there is also the dynamics of mutation: if no new genetic material is thrown into
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the pool, the flock will tend to stabilize and not improve anymore. Also, maybe the

characteristics that made the individuals fit for survival is superseded by another,

new feature, which has even stronger effect (intelligence over speed, e.g.).

On the average, it appears that either the prey becomes extinct (if hardly any

individuals were strong, quick or smart enough) or tends to increase its overall

fitness.

Well, this is exactly how a basic genetic algorithm works. Of course, we will not

consider a herd of prey, but population P within a search space Ω and instead of

measuring the fitness, the aptness to survive of individual prey, we will work with

some fitness function f : Ω → R, which may be applied to any member of Ω, hence

of P . Note that repetitions will be allowed in P , which makes it different from an

ordinary subset of Ω (whence the terminology “population” or “multiset”, instead

of just “subset”). This is related to the fact that we are not just interested in

finding optimal or, at least, good solutions with respect to f , but rather also the

structure of these solutions, the reason why they produce high values for f – see also

below, when we talk about schemas. In fact, instead of working with elements in

an arbitrary search space Ω, we will usually codify these elements as binary strings1

s = s�−1 . . . s0 of fixed length �, say, in order to be able to manipulate them in a

uniform way. Moreover, encoding data by binary strings is not so unnatural: in real

life, many kinds of data are encoded this way – just think of the number of enquiries

which ask you to answer a variety of questions just by “yes” or “no”.

So, let us assume we are given a function

f : Ω� = {0, 1}� → R,

which we want to optimize. Maybe we should stress that “being given” this function

f means that we are able to calculate the value f(s) for each string s ∈ Ω. This is

not the same thing as being given, initially, all of the values f(s), for every s ∈ Ω. As

an example, in the Traveling Salesman Problem, we are perfectly able to calculate

1Note that if we consider strings of length �, we identify Ω with the set {0, 1}� and, hence,

we silently assume that our search space has cardinality 2�; of course, in practice, the number of

elements of Ω is not necessarily a power of 2; several methods have been developed to remedy this

– we refer to the literature for details.
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m

M

a b a

m

M

(a) (b)

Figure O.4: (a) If one starts in a, one reaches the local maximum m, starting from b

one reaches the real maximum M . (b) Starting in a, moving in the direction of the local

maximum m is much steeper – the real maximum M will not be reached.

the length of each circuit (just adding distances), but we are, of course, not given the

whole set of lengths (otherwise, there would be no optimization “problem”; finding

the optimum would just amount to looking at a (large!) list of values and just

picking the best one!).

As already indicated, one usually tries to tackle the problem of optimizing f : Ω → R

by gradient methods or, somewhat easier and more straightforward, by hill-climbing.

This method essentially reduces to starting from an arbitrary point and always

moving in the direction of the “best” neighboring point. Of course, sometimes

this works, sometimes it does not – much depends on the starting point and the

geography of f , as shown in figure O.4.

To remedy this, one might try and consider a whole group of hill-climbers, starting

at different points. But then again, unless the hill-climbers interact in some way,

exchanging information, one cannot be certain whether, on the average, they will

move in the right direction: if some of them are pertinently moving in the wrong

way, they should be retrieved and switch to “another hill”, in order to help the

others.

In order to attain this information exchange, one proceeds as follows. First, we start

from a random population P (0) of fixed size N < 2� of possible candidate solutions

(repetitions are allowed!). These strings are chosen randomly – their number N is a

fixed quantity controlled by the user. For each s ∈ P (0), we may calculate the value
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f(s) and the idea is to use the different values f(s) for s ∈ P (0) to help increase the

overall or average value of the population. Note again that we only have to calculate

f(s) for at most N values (recall that P admits repetitions).

We view the strings in the population as prey or, better, as genetic material or

chromosomes describing them, measuring their overall fitness with respect to survival

resp. the problem we wish to solve.

Just as in genetics, reproduction involves combining chromosomes, exchanging ge-

netic material and applying changes, e.g., through crossover or mutation.

So, let us mimic these operations in our present context.

The first operator, selection or reproduction, essentially just picks two parents to

produce offspring. Of course, if we wish strong offspring, we should better pick good

parents, i.e., strings with high fitness. One might thus be tempted to restrict choices

to strings in P (0) with maximal fitness. This is a rather bad idea, however. Just

like what happens in nature, an individual may be very fast, but just too stupid to

run. Combining this with an intelligent, but unfortunately very slow partner, may

still lead to offspring which is both fast and bright (or, of course, slow and stupid

– but these tend to disappear anyway, remember the hunter/prey model). To allow

these “accidental” good strings to be produced, we will include some probabilistic

dynamics.

For each string si ∈ P (0), the probability pi of being selected as a parent will

be put, e.g., proportional to its fitness (several variants are possible!). Hence, if

fiff = f(si), this probability is fiff /
∑

si∈P (0) fiff . One may simulate this through the

so-called roulette or casino model. We assign to each si a sector of the roulette

wheel, with size proportional to its fitness. (See figure O.5.)

We then spin the wheel around and pick the string corresponding to the place

where the ball stops. Since the “good” strings correspond to large sectors of the

wheel, these have a higher probability of being picked than their “bad” counterparts,

corresponding to smaller sectors. But then again, one never knows – and this is good

for the dynamics of the system.

So, once we picked two parents, what do we do? Well, reproduce, of course. This

works as follows.
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s1

sN

s2

s3

Figure O.5: Roulette wheel selection.

First, we apply crossover. Assume we picked two strings

s = s�−1 . . . s0

t = t�−1 . . . t0,

then we first randomly pick a crossover site 0 < i < � − 1 and we exchange heads

and tails at this site, to obtain

s′ = s�−1 . . . siti+1 . . . t0

t′ = t�−1 . . . tisi+1 . . . s0.

We then replace the original parents s, t by the offspring s′, t′. Repeating this for

each selected pair of parents, we thus replace the original population P (0) by a new

one (of the same size).

However, just as in genetics, crossover does not always occur when we pick two

strings. In practice, we will thus only apply crossover with a fixed probability, say

pc = 0.3, for example.

The second operator one usually applies is mutation. Exactly as happens in real

life, where mutation occasionally changes the genetic contents of individual genes,
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we will apply something similar to the bits of which our strings are composed. What

we essentially will do is to change bits with value 0 to 1 and with value 1 to 0, with

a low probablity pm, say pm = 0.01, for example.

And that’s it! The so-called simple genetic algorithm proceeds exactly the way we

just described: start from a random generation of strings P (0), select pairs of strings

through the roulette principle, apply crossover and mutation, and repeat this process

until one obtains a new populaton P (1); we then iterate this procedure to obtain

successive populations P (t), t ≥ 0.

Somewhat more formally:

procedure: genetic algorithm

begin

t <-- 0

initialize P(t)

evaluate P(t)

while (not-termination condition) do

t <-- t+1

select P(t-1)’ from P(t-1)

apply crossover on P(t-1)’

apply mutation on P(t-1)’

P(t) <-- P’(t-1)

end

end

What one hopes to obtain through this process are populations P (t) whose average

fitness increases in time, i.e., we want each generation to contain more and more

strings with fitness converging to the optimum of the function we are studying.

Before including an easy example, let us point out that this is just a particular

instance of a genetic algorithm – there is a huge folklore in the field of GAs, as they

are usually referred to, involving several types of sometimes rather exotic operators.

In this introduction, we will restrict ourselves to the “simple GA” described above.
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So, let us give an example to show how the GA acts in practice. Consider the space

Ω5 of strings of length 5, which we identify with the set {0, 1, . . . , 31} in the obvious

way, i.e., 0 ↔ 00000, 1 ↔ 00001, . . ., 31 ↔ 11111. We wish to optimize the function

f : Ω5 → R : x �→�� x2.

(Yes, the authors are aware of the fact that the maximum of f is reached at f(31) =

961!)

We start with the following initial random population P (0), where for each s ∈ P (0)

we also include the corresponding fitness value f(s):

P (0) f P (0) f

01011 121 10100 400

00001 1 00100 16

00111 49 11100 784

11110 900 11010 676

10101 441 10011 361

Note that the maximum value obtained within P (0) is 900 and that the average is

375.

We construct the next generation P (1) by first selecting an intermediate population

P ′(0) through the roulette model and then applying successively crossover for each

pair of selected parents and mutation to their offspring. In the table below we

indicate by | the randomly selected crossover site and by underscore the bits where

mutation has been applied:
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P ′(0) P (1) f

111|10 11101 841

101|01 10110 484

11|100 11111 961

00|111 00100 16

10|011 10110 484

11|110 11011 761

111|00 11110 900

110|10 11001 625

0|1011 01110 296

1|1110 11011 761

Note that the population now has maximal value 961 (the maximum of f !) and

average fitness 613.

Iterating this procedure, we obtain:

P ′(1) P (2) f P ′(2) P (3) f P ′(3) P (4) f

111|11 11111 961 111|11 11110 900 1111|1 11110 900

110|11 11011 761 111|10 11111 961 1111|0 11111 961

1110|1 11100 784 110|11 11001 625 11|111 11111 961

1111|0 11111 961 111|01 11111 961 11|111 11111 961

111|11 11110 900 1|1110 11000 576 1111|0 11111 961

101|10 10111 529 1|1100 11110 900 1100|1 11000 576

1|1001 11011 761 1111|1 11111 961 11|100 11111 961

1|1011 11101 841 1101|1 11011 761 11|111 11000 576

1110|1 11100 784 11|100 11111 961 1|1111 11110 900

1111|0 11111 961 11|111 11100 784 1|1110 11111 961

If we look at the evolution of the maximum and the average through these successive

generations, we find the following values for the maximum value in the population,

its multiplicity and the average:



Chapter O. Genetic algorithms: a guide for absolute beginners 13

population max mult av

P (0) 900 1 375

P (1) 961 1 613

P (2) 961 3 814

P (3) 961 4 840

P (4) 961 6 872

It appears that the string 11111 which corresponds to the maximum of f quickly

starts to dominate the population – actually, we could use the fact that a cer-

tain string accounts for more than half of the population as a stopping criterion.

Moreover, we may also observe that the average fitness of the population gradually

increases through successive generations.

In view of this example, it thus seems that the GA does indeed function well, i.e.,

that each successive generation tends to be better, in the sense that its average

fitness increases, that it contains an increasing number of strings which are close to

realizing the optimum.

Of course, an obvious but fundamental question is: why does this (seem to) work?

In order to try and give an answer to this, let us take another look at the previous

example. It appears that strings starting with 1 definitely have a higher fitness than

those starting with 0. The reason for this behavior is, of course, trivial, since the

first bit accounts for an extra value of 16 if it is set to 1, in the identification Ω5 ↔
{0, . . . , 31}. In general, however, we are only able to calculate f(s) for individual

strings s ∈ Ω� (where � may be large); in particular, it is thus initially unclear

whether certain bits or combinations of them are “more important” than others.

Nevertheless, since it appears that the structure of certain strings somehow makes

them of higher fitness, let us introduce the notion of schema, in order to be able to

describe the kind of structure we are interested in. By definition, a schema is an

element of the space {0, 1, #}�, i.e., a string of length � involving the bits 0 and 1 and

the “don’t care” symbol #. For example, H = 01#1# is a schema of length 5. We

say that a string s belongs to the schema H if s and H coincide at all places where

H is different from #. For example, s = 01110 belongs to the schema H = 01#1#.

We will frequently identify a schema with the set of strings belonging to it, so, for
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example

H = 01#1# ←→ {01010, 01011, 01110, 01111}.

Formally: if H = h�−1 . . . h0 and s = s�−1 . . . s0, then s ∈ H , exactly when si = hi,

whenever hi �= #. Note that�� H = # . . .# may be identified with the whole search

space Ω�. If we define the order o(H) of H to be the number of 0 and 1 positions,

i.e., the fixed positions, as opposed to the don’t care positions, then it is clear that

H corresponds to a subset of Ω� of cardinality |H| = 2�−o(H).

Returning to the above example, it should now be clear that the schema H1 =

1#### is better than the schema H0HH = 0####, in the sense that the strings in

H1 have higher fitness than those in H0HH . In fact, if we denote by f(H) the average

fitness of H , i.e.,

f(H) =
∑
s∈H

f(s)/|H| =
∑
s∈H

f(s)/2�−o(H),

then an easy calculation shows that f(H1) = 573.5 and f(H0HH ) = 77.5.

If we consider the runs of the GA in the above example, then we may observe that

the number of strings belonging to H1 is increasing gradually, whereas the number

of strings belonging to H0HH is decreasing. This is exactly what we want: we would

like the GA to mainly produce strings performing well, belonging to schemas whose

structure is related to high fitness.

Let us briefly sketch some of the maths behind this.

For any schema H , denote by P (H, t) the set of strings in the t-th population P (t),

which also belong to H and by m(H, t) the cardinality of P (H, t). In particular,

P (Ω, t) = P (t) and m(Ω, t) = N .

During the selection procedure (recall the roulette wheel model!), an intermediate

population of N strings is created, where each string s ∈ P (t) has a probability

ps = f(s)/
∑

r∈P (t) f(r) of being selected.

For each s ∈ P (t), one thus expects N.ps copies of s in this intermediate population.

Restricting to H , one may expect

m(H, t + 1) = N
∑

s∈P (H,t)

ps
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strings in P (H, t + 1). Denote by f(H, t) the average of f on P (H, t), i.e.,

f(H, t) =
∑

r∈P (H,t)

f(r)/m(H, t),

and note that

f(Ω, t) =
∑

r∈P (t)

f(r)/N

is the average of f on the whole population P (t).

Then the above identity yields

m(H, t + 1)=N
∑

s∈P (H,t)

ps

=N
∑

s∈P (H,t)

f(s)∑
r∈P (t) f(r)

=N

∑
s∈P (H,t) f(s)∑
r∈P (t) f(r)

=N
m(H, t)f(H, t)∑

r∈P (t) f(r)

=m(H, t)
f(H, t)

f(Ω, t)
.

Let us stress that this identity just says that the expected value of m(H, t + 1) is

equal to m(H, t) f(H,t)
f(Ω,t)

and that we did not yet apply genetic operators like crossover

or mutation.

As an immediate, first corollary, it is clear that if f(H, t) > f(Ω, t), i.e., if, on the

average, the strings in H score better than those in the whole population, then

m(H, t+1) is higher than m(H, t), whereas m(H, t+1) is lower than m(H, t) in the

other case. Otherwise put: if H is a “good” schema, its presence will be higher in

the next population, if it is “bad’, then its presence will be lower.

If H remains a fixed percentage a > 0 above average, i.e., if f(H, t) = (1 + a)f(Ω, t)

throughout, then the previous formula yields

m(H, t) = m(H, 0)(1 + a)t.
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This means that one expects the number of strings in P (H, t) to increase exponen-

tially! In a similar way, it is easy to see that the number of strings in P (H, t) will

decrease exponentially, if H constantly remains below average.

Let us stress that this statement only has a theoretic value: (1) we already mentioned

that we are talking about “expected behavior” and (2) the assumption that f(H, t)

constantly remains a factor 1 + a above average cannot hold permanently, as this

would imply P (H, t) to continue growing which is, of course, impossible within the

(finite!) search space Ω.

The previous results seem very promising, but unless we include some extra dynam-

ics, we are essentially just looking for the best solution within an arbitrary but fixed

population (all of whose strings might well be of very low fitness!). As we pointed

out before, we need genetic operators like crossover and mutation to remedy this.

Let us start with crossover. Consider the following two schemas of length 8:

H1 = ####1#1#

H2HH = #1####1#

and the string s = 11111111, which belongs to both H1 and H2HH .

If we combine s with the string t = 00000000, say, and if we choose the crossover

site between the fourth and the fifth bit, for example, then we obtain new strings

s′ = 00001111

t′ =11110000.

It appears that s′ belongs to H1, whereas neither s not t′ belongs to H2HH . In other

words, the schema H1 survives in the offspring, whereas H2 does not.

It is easy to see that there are 5 crossover sites for which H1 always survives, whereas

there are only 2 (between the first and the second bit and between the seventh and

the last bit) where this holds for H2. Since the crossover site is chosen randomly

(and uniformly) amongst the � − 1 possible ones, it appears that the probability of

survival of H1 is thus equal to 5/7 and that of H2 to 2/7.

This is tightly linked to the notion of defining length of a schema H , denoted by δ(H)

and defined to be the distance between the first and the last fixed string position.
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For example,

δ(H1) = 7 − 5 = 2 resp. δ(H2HH ) = 7 − 2 = 5.

For an arbitrary schema H , it is easy to see that the probability of destruction

through crossover is equal to δ(H)/(� − 1) and the probability of survival is thus

1 − δ(H)

� − 1
.

As we pointed out, crossover is, in general, just applied with some probability pc,

which implies that the probability of survival for H is thus

pc(H) = 1 − pc
δ(H)

� − 1
.

Again we should not view this as an exact statement: even if a “bad” crossover site

is selected, the schema H could still survive “accidentally” though the choice of the

partner of the string we consider. To given an example, suppose that

s= 11111111

t = 01000001,

where, again, s ∈ H1 Applying crossover between the seventh and last bit yields

s′ = 01000011

t′ =11111101,

and we see that, although the crossover site was “bad”, the schema H1 still survives

(through t′). So, to be more precise, we should put

pc(H) ≥ 1 − pc
δ(H)

� − 1
.

Combining this with the general formula, this leads to

m(H, t + 1) ≥ m(H, t)
f(H, t)

f(Ω, t)
(1 − pc

δ(H)

� − 1
).

Finally, let us include the effect of mutation. As we mentioned before, mutation

randomly changes bits from 0 to 1 and vice-versa, with some fixed, small probability

pm.
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As an example, let us consider the string s = 01110, which belongs to the schema

H = 01#1#. Flipping bits at the third position yields the string s′ = 01010, which

still belongs to H , whereas flipping bits at the second position yields s′′ = 00110,

which does not.

In general. it should be clear that the schema will only survive, if we apply mutation

at the non-fixed positions of the schema. Since 1 − pm is the probability of not

changing a certain, single bit and since we do not want to touch the fixed positions

(whose number is o(H), the order of H), the probability of survival of a schema H

is

pm(H) = (1 − pm)o(H).

Note also that we assumed pm to be small (usually of the order of 0.01, for example),

hence we may approximate this by

pm(H) ≈ 1 − o(H)pm.

If we thus, finally, combine the effects of selection, crossover and mutation, we get

m(H, t + 1)≥m(H, t)
f(H, t)

f(Ω, t)
(1 − pc

δ(H)

� − 1
)(1 − o(H)pm)

≈m(H, t)
f(H, t)

f(Ω, t)
(1 − pc

δ(H)

� − 1
− o(H)pm).

Let us call a schema a building block (with respect to f) if it is short (δ(H) is mall),

of low order (o(H) is small) and above average (throughout f(H, t) > f(Ω, t)). Since

for a building block the factor 1− pc
δ(H)
�−1

− o(H)pm is close to 1, it thus follows that

building blocks still tend to dominate the population, as m(H, t + 1) > m(H, t).

More precisely, we obtain the following

Theorem O.1 (Schema Theorem). By applying a genetic algorithm, building

blocks receive an exponentially increasing number of trials through the successive

generations.

Intuitively, this result says that if the structure of “good” solutions of our optimiz-

ation problem may be described by “simple” schemas (building blocks), then these
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good solutions will tend to dominate the population in an exponentially increasing

way.

Of course, as we already stressed before, this result is mainly of theoretic value

as, in practice, several phenomena may complicate search by a genetic algorithm,

including deception or epistasis. For the former, we refer to existing literature, the

latter is exactly the subject of this book.



Chapter I

Evolutionary algorithms

and their theory

We do not aim at completeness in this review of genetic algorithms and their theory.

Our wish is to provide a brief overview that is broad enough to show the richness

of the field, yet focused enough to mention a number of important results that help

put the rest of the book in good perspective. We only occasionally fill in details but

refer amply to existing literature.

1 Basic concepts

Generate-and-test is an important paradigm in search and optimization. It groups

algorithms which iteratively generate a candidate solution and then test whether

this candidate solution satisfies the goal of the search problem. Random search is

the simplest of all generate-and-test methods: according to predefined probabilistic

rules, it generates an arbitrary candidate solution, tests it, stops when it is successful,

and does another iteration when it is not. While usually not very competitive, this

algorithm is sometimes used as a basis for measuring the performance of other search

algorithms.

Search is easily cast to optimization by providing a binary function with value 1

if the candidate solution is indeed a solution, and 0 otherwise. In most cases,



however, the function is more fine-grained, and interpreted as a measure of how far

away the candidate solution is thought to be from a solution. In this book, it is

called the fitness function; other names apply in other contexts (heuristic function,

objective function, penalty function, cost function, . . . ), but they always refer to

the same concept. Similarly, “candidate solution” can be replaced by configuration,

or, common in genetic algorithms literature, individual. In our setup, finding the

optimal individual will always accord to maximizing (rather than minimizing) the

fitness function.

At the basis of the generator is a representation of the candidate solutions. In

the case of random search, the form of this representation is irrelevant as long as

all candidate solutions can be represented in a unique way. More typically the

outcome of the tester is used to guide the generation of the next candidate solution.

The algorithm then explicitly exploits the relation between the representation and

the fitness function by making modifications in the representation based on fitness

information.

The stochastic hill-climber is a simple form of such an algorithm. Initially, an indi-

vidual is selected at random, and tested. Then a small modification is made in the

representation of this individual, yielding a new individual which is also tested. If

the fitness of the new individual is better than that of the original, the modifica-

tion is accepted: the new individual replaces the old one. If the fitness of the new

individual is worse, the modification is rejected and a new modification is tried. A

neutral modification, one which does not change the fitness value, may be accepted

or rejected. When all possible modifications to a (suboptimal) individual yield a

strictly inferior individual, this individual is called a local optimum.

An example optimization problem of high tutorial value in genetic algorithm re-

search is the onemax problem. Its individuals are defined by their representation, in

casu bit strings of length � (which allows us to use the words string and individual

interchangeably). The optimum is the string of all 1s, and the fitness function maps

a string s ∈ Ω = Σ� = {0, 1}� to the number of 1s in this string. Note that there are(
�
n

)
strings with fitness value n; the distribution of fitness values is a Binomial with

� draws and probability 1
2

of drawing a 1. As a consequence, a randomly generated
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string, i.e., a string where the value of each position is independently drawn from

a uniform distribution on {0, 1}, is likely to have a fitness value around �/2, where

the mass of the distribution is.

The stochastic hill-climber described above can be applied to the onemax problem

if we specify what a modification in the representation of an individual means. Usu-

ally, one chooses to flip the value of one of the bits: 0 becomes 1 and 1 becomes

0. In genetic algorithms language, this modification is called a (single point) muta-

tion. Equipped with this modification operator, the stochastic hill-climber has no

difficulties optimizing the onemax problem. This might seem strange at first sight,

for when � is sufficiently large, the number of high fitness strings in the onemax

problem is extremely small compared to the number of average fitness strings. The

relation between the fitness function and the representation, however, is benign and

responsible for the immediate success of the algorithm.

The Hamming distance is a metric on Ω, the space of binary strings of length �, which

reflects the minimal number of single point mutations required to change one string

into another. Said differently, it counts the number of bit positions where two strings

differ from each other. One easily observes that the onemax function evaluated in

a string t is nothing but the Hamming distance between the string of all 0s and

this string t. Mutations which increase the fitness value automatically decrease the

distance to the optimum. No local optima exist. Somewhat heuristically, one can

say that there is an easy path toward the optimum.

It is easy to modify the onemax problem to obtain a search problem which shows

no benign correlation whatsoever between representation and fitness. Suppose, for

example, that we select a symmetric encryption scheme (DES, IDEA, Rijndael,

. . . ), and encrypt each string before applying the fitness function to it. Regard-

less of whether neutral modifications are allowed or not, the single-point mutation

stochastic hill-climber described above will not even reach fitness value 2
3
�, because

there is no information to guide it toward the increasingly rare high fitness individu-

als.

This setup allows us to introduce the terms genotype and phenotype, adapted from

genetics to distinguish between the individual (the genotype) and its representation
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(the phenotype). In almost all of this book, we will identify the individual with its

representation, ignoring the distinction. But when we apply the encryption before

the fitness function, we can speak of a genotype (unencrypted string, identified with

individual) and a phenotype (the encrypted string). Using this terminology, we ob-

serve that a small modification to a genotype yields a phenotype which differs in on

average �
2

bits from the original phenotype. In this way, the correlation between a

change in fitness and a change in Hamming distance toward the optimum is com-

pletely lost. The probability of hitting the optimum with the stochastic hill-climber

has effectively become that of finding a needle-in-a-haystack (i.e., 1 out of 2�).

The well-known Metropolis algorithm [58] differs from the basic stochastic hill-

climber in only one rule: instead of always rejecting an inferior individual, the

algorithm accepts an inferior individual with a probability which is a function of

the difference in fitness and the temperature at which the algorithm is operating.

Concretely, a modification is accepted with probability min (1, exp(−β∆f)), where

β = 1/T denotes the inverse temperature and ∆f the fitness difference. This Markov

Chain Monte Carlo algorithm can be used to draw independent samples from the fit-

ness distribution at a fitness level corresponding to the temperature. The lower the

temperature, the higher the fitness, the more the samples come from the interesting

tail of the fitness distribution, and the slower the process becomes.

Simulated annealing [101] is the process of repeatedly applying the Metropolis al-

gorithm at well-chosen, ever decreasing temperatures. It turns Metropolis into a

“hands free” optimization algorithm which is guaranteed to find the optimum of

any reasonably behaving search problem, if, and there is the catch, the temperature

is decreased slowly enough.

Three closely interacting features distinguish a genetic algorithm (from now on ab-

breviated to GA) from a hill-climber: a GA maintains a population of individuals,

and applies a second modification operator, called crossover, which creates two new

individuals (called children) by exchanging parts of the representation of two indi-

viduals in the population (called parents). A selection scheme keeps the population

at a fixed size by removing the least fit individuals to make place for (the offspring

of) the fitter ones.
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The traditional references to GAs are Holland [34] and Goldberg [26]. More recent

overviews include [62] and [3, 4].

2 The GA in detail

A GA, in its canonical form, maintains a population P of individuals I1, . . . , InII ,

identified with their representation as a bit string of length �. Although we will

rarely use it, we mention that the terminology borrowed from genetics is as follows:

each bit in the string is called a gene, its value is called the allele (here 0 or 1), and

the position of the bit in the string is termed the locus (here between 0 and � − 1;

the plural of “locus” is “loci”).

Initially, the population is filled with randomly generated strings. Each of these

strings is evaluated, and their fitness values are stored. Then the following steps are

iterated until some stopping criterion is fulfilled, e.g., the number of iterations has

reached a bound or an optimum of sufficient quality is found:

1. selection. Fill a temporary population by independently drawing individuals,

with replacement, from the current population according to some probability

distribution based on their fitness. If the probability of selecting individual I

equals f(I)/fPff , where the denominator represents the average fitness of the

population, we speak of fitness proportional selection.

2. crossover. Arbitrarily partition the temporary population into pairs of strings

called parents. Perform crossover on each pair to obtain new pairs called

children, which replace their parents in the temporary population. One-point

crossover is defined as follows. With probability χ, called the crossover rate,

we draw a crossover point p from a uniform distribution on {1, 2, . . . , � − 1}
(where string positions are labeled 0 up to � − 1). We then swap the tails of

the strings of the parents starting from bit position p to obtain the children.

For example,

011 1001

101 0011
=⇒==

0110011

1011001
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Figure I.1: Average and best fitness in the population of one run of a generational GA

on a 100-bit onemax problem. The population size is 100, the selection strategy is binary

tournament selection, one-point crossover is applied at a rate of 0.8, and the mutation

rate is 0.1.

With probability 1 − χ, the children are exact clones of their parents (no

crossover is performed).

3. mutation. Perform mutation on each string in the temporary population. The

common mutation operator flips each bit independently with a (small) prob-

ability µ, called the mutation rate. For example, 0111001 becomes 0110001.

4. Accept the temporary population as the new generation, and reevaluate the

strings in this new population. In a time-static environment, where the fitness

function does not change each generation (which is what we have assumed so

far) a cache may be used to avoid reevaluation of the same string over and

over again.

Figure I.1 shows a typical statistics of a GA run on the onemax problem: the fitness

of the best individual in the population, and the average fitness of the population.

The wealth of parameters (population size, selection method, crossover method and

crossover rate, mutation rate are the most common) and the large number of al-
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gorithmic variants which we do not even begin to describe, make it hard to speak

of the GA. Rather, one should always try to specify its main components. The GA

variant described above is sometimes referred to as the simple GA. Let us discuss

some of the main components and parameters in more detail, referring to the GA

when the details of its components do not matter that much or can be inferred from

the context.

The GA described above is a generational GA. In each generation, the whole popu-

lation is updated. This is in contrast to steady state GAs where in one generation,

only a small portion of the population is changed. The generation gap quantifies

the position of the algorithmic variant between the extremes of a generational GA

and a steady state GA where in one generation, only one individual is changed.

Many different selection schemes have shown up over the years. The one we will

use throughout this work is called binary tournament selection, a scheme which fills

the temporary population by repeatedly drawing, with replacement, two individu-

als from the population and selecting the fittest of this “tournament” of size two.

Each scheme, usually equipped with some parameters, can be classified according

to the amount of selective pressure it exerts on the individuals. Fitness proportional

selection is classified as weak compared to ranking selection and truncation selec-

tion, to name only two other schemes. For our purposes, it suffices to know that

the selection pressure can be chosen by selecting an appropriate selection scheme.

An additional feature, implicitly present in only a few schemes and often explicitly

forced, is elitism. An elitist GA never throws away its best individual.

The mutation operator is not considered to be the driving force of the optimization

process. Rather, it is seen as a background process which adds diversity to the pop-

ulation, supplementary to crossover. Many variations of the canonical GA decrease

the mutation rate as the search process advances. Note that an extremely high

mutation rate of 1
2

turns each new generation into a population of random strings.

Crossover is the feature that distinguishes a GA from other generic optimization

techniques. It generates individuals that are composed of parts of the genotype

of their parents. The implicit assumption here is, of course, that swapping tails or

exchanging substrings is beneficial for the search process. In many real-world applic-
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ations this appears to be the case. Theoretically, however, proving that crossover

actually improves performance is non-trivial and only recently example problems

have shown up that are next to impossible to solve for mutation-based algorithms

and easy to solve for any variant of a GA that uses crossover.

We throw in a brief note on the role of mutation and crossover. The preceding

paragraphs contain phrases like “is seen as” and “is considered to be”. The point

of view expressed above is the traditional one. GAs have not been developed by

theoretical computer scientists specialized in algorithms, nor by mathematicians or

physicists. Many people with this background view the GA as a mathematical object

or an efficient heuristic rather than an algorithm mimicking a natural process. To

them, the question of importance is replaced by the question of how these operators

interact with each other.

The term fitness landscape refers to a fitness function in combination with a metric

on the search space. The metric defines which points in the search space are near

to a point or a set, and which are far away. If one visualizes a landscape as a three-

dimensional (real world) landscape, where the height is a function of longitude and

latitude, then the terms local optimum, rugged landscape, smooth landscape and flat

landscape obtain intuitive meanings.

We have already encountered one important metric on the space of binary strings:

the Hamming distance. It is the natural metric to describe the action of the common

mutation operator of GAs since the Hamming distance between two strings is noth-

ing but the minimal number of bits that need to be flipped to move from one string

to the other. In terms of this metric, the common mutation operator is a local search

operator, since on average it flips one bit. The mutation landscape of the onemax

problem is ideal to optimize: it is unimodal (it has one broad peak) and regular

(in the sense that a single mutation either increases or decreases the fitness by one;

no neutral steps are possible). A question that is more difficult to answer is what

the landscape of a crossover operator looks like, since it is a binary operator that

is applied to individuals drawn from a population that changes over time. We will

elaborate more on this theme in section 7, and finish here by mentioning that the

amount of local optima and the sizes of their basins of attraction can be estimated
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using different statistical techniques [21, 78].

3 Describing the GA dynamics

The GA can be modeled exactly as a homogeneous Markov chain whose states are all

possible populations of finite size n. Because the mutation operator can theoretically

transform one string into any other string with a non-zero probability, this chain

is ergodic, and yields a limiting distribution where all populations have a non-zero

probability of being visited. When elitism is added to the algorithm, only optimal

populations will have a non-zero probability in the limiting distribution, and the GA

can be said to converge [82]. The vast number of different states makes the Markov

matrix difficult to analyze in all but the most trivial cases. A general convergence

result is of limited practical value since any finite search space can be enumerated

and hence optimized in a finite time.

The approach presented in [105] also contains the previous result but is a much more

extended and richer body of theory. Let p ∈ Λ be a population vector, describing

for each string its proportion in the population. We call Λ = {(pi);
∑

i pi = 1} the

simplex. The heuristic function G embodies all GA operations and maps p to a

population vector G(p) whose entries determine the probability that each individual

will be contained in the next generation. The next generation is then constructed

by sampling n times from this distribution with replacement. This approach allows

the separation of the GA dynamics into a signal, given by G, and stochastic noise

introduced by the sampling of a finite population. When the population size is

taken to infinity, the stochastic noise disappears and the dynamics of the (now

deterministic) system is governed by G only.

The latter situation is commonly referred to as Vose’s infinite population model. It

is an approximation of the GA dynamics in the sense that the trajectory of the GA

in the simplex does not necessarily follow that of G. For large enough population

sizes, the presence of punctuated equilibria [105, chapter 13], periods of relative

stability near a fixed point of G interrupted by the occurrence of a low probability

event moving the population away into a basin of attraction of another fixed point,
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reconcile the ergodicity of the GA with the potentially converging infinite population

dynamics.

The heuristic G can be written in an elegant and relatively compact form but typic-

ally results in a set of minimally 2� coupled difference equations to be solved if one

wants a closed form for the dynamics. For this reason, aggregation of the variables

(coarse graining) is necessary to reduce the number of equations. Keeping track of

all details is unnecessary or at best intractable. The question is, however, which

macroscopic variables to choose? In a number of concrete cases, ad-hoc choices are

possible, but it remains unclear how to proceed in a systematic way.

From the introduction of GAs onward, schemata have played a prominent role in

the efforts of understanding how the GA works. (A schema is a hyperplane in Ω and

is typically denoted by a string over the alphabet {0, 1, #}, where the # is used as a

“don’t care” symbol. We elaborate further on schemata and their properties in the

next section.) In his seminal work, Holland introduced the schema theorem which

gives a lower bound on the expected presence of a schema in the next generation

given the information about schemata in the current one. Over the years, this

relation has received much criticism and many exact versions (sets of difference

equations that can be iterated) have shown up (e.g., [105, chapter 19], [91]).

However, in [105, chapter 19] it is also shown that as natural macroscopic variables,

schemata are incompatible with the heuristic G for most common situations; i.e., for

non-trivial fitness functions, coarse graining a population vector and then applying

G is not identical to coarse graining after the application of G. This implies that no

exact coarse grained version of G can exist, although approximations are possible.

The fitness component of G is responsible for the incompatibility, for the mixing

component (mutation and crossover) can be shown to be compatible. The latter

result helps understanding the interest in schemata as a tool for understanding the

working of crossover. It also explains why computing the dynamics of a GA under

non-trivial fitness is (up to now) very difficult within the “exact schema theorem”

framework.

An altogether different approach to describing the dynamics has come from physi-

cists studying disordered systems. Starting from only two macroscopic variables, the

Chapter I. Evolutionary algorithms and their theory30



mean and variance of the fitness distribution of the population, they have succeeded

in approximating the dynamics of a GA operating on a number of search problems

whose complexity is beyond that of onemax [74, 85, 86]. The approximations have

been improved by computing higher moments of the fitness distribution, and adding

finite population corrections.

We finally mention the approach followed in [63, 64] for modeling GA dynamics.

Here a probability distribution over the state space is modeled by factorizing the

distribution to obtain a limited number of parameters whose evolution can be com-

puted. The first order approximation, where each of the � variables is considered

independent, corresponds to a population which is permanently in linkage equilib-

rium (this notion is defined in the next section). More accurate models introduce

dependencies between the variables. An alternative family of search algorithms is

based on this theory: they start from an initial distribution, sample the search space

according to this distribution, and then adjust the parameters of the distribution ac-

cording to the observations. They can even adapt the structure of the factorization

dynamically.

4 Tools for GA design

The engineer’s approach to genetic algorithms is concerned with finding reliable

“rules of thumb” that help design an algorithm appropriate for a search problem at

hand. Since the current theory of GA dynamics is insufficiently rich to provide such

guidelines, the engineer will need to use more approximate and heuristic arguments.

Focusing, for the sake of brevity, on population sizing guidelines, we will discuss

the basics of a model based on building block properties of the search problem [30].

Before defining the term building block, however, we need some more terminology

about schemata.

As defined before, a schema is a hyperplane of the search space Ω = Σ�. It is

usually written as a string over the augmented alphabet Σ′ = Σ ∪ {#} = {0, 1, #},
where the # plays the role of a “don’t care” symbol. Technically, an individual1

1Unconventionally, we write strings with the highest index first, ending with index 0. This
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s�−1 . . . s0 belongs to a schema h�−1 . . . h0 if si = hi for all i such that hi �= #. We��
use the term schema fitness distribution to denote the distribution of fitness values

of all individuals belonging to a schema. The fitness of a schema is defined as the

expected value of this distribution. The order of a schema is given by the number of

non-# symbols in the schema, the length of a schema is given by the largest distance

between two non-# symbols. The term building block, finally, refers to a fit, short,

low-order schema.

The concepts of a schema and its fitness distribution are central to a simple and

intuitive hypothesis about the dynamics of a GA, which we present in the form of the

static building block hypothesis [29]. Knowing that a hyperplane partition consists

of all schemata with #s on the same positions, and a schema competition is defined

as the comparison of the average fitness values of all schemata in a hyperplane

partition, the hypothesis sounds:

Given any short, low order hyperplane partition, a GA is expected to

converge to the winner of the corresponding schema competition.

(Note that the word static is used to stress that no actual GA dynamics is involved.)

Using this hypothesis as a starting point, Goldberg [27] decompose the problem of

understanding GA behavior into seven points:

1. know what the GA is processing: building blocks

2. solve problems that are tractable by building blocks

3. supply enough building blocks in the initial population

4. ensure the growth of necessary building blocks

5. know the building block takeover and convergence times

6. decide well among competing building blocks

7. mix the building blocks properly.

notation is more natural when we consider the correspondence between natural numbers and their

binary expansion.
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Elaborating on items 3 and 6, these authors apply the Gambler’s ruin model to

estimate the probability of mistakingly choosing an inferior building block over a

better one for a given population size. Their result is a population sizing equation

n = −2k−1 ln(α)
σBB

√
πm′

d
.

The equation indicates that the population size n gets larger as the average variance

σBB of the building blocks increases, and smaller as the signal difference d (the dif-

ference between the average fitnesses in the competition) increases. The parameter

m′ = m − 1 determines the number of competing building blocks; α is 0.1 or 0.05,

the probability with which an error is allowed.

A schema competition is said to be deceptive when no solution of the problem is

contained in the fittest schema of the partition. The parameter k indicates the size

of the largest such deceptive competition. The equation shows that the population

size is exponential in k; keeping k small is therefore essential, and this is expressed

in item 2 of the decomposition.

We end this section with a little more terminology. A schema is called deceptive

when (a) it is the winner of its schema competition and (b) no solution is contained

in it. A search problem is called deceptive when it contains deceptive low order

schemata. We refer to [108] for a discussion of deception. According to the building

block hypothesis, deceptive problems should be hard for a GA because they mislead

its search for a solution.

5 On the role of toy problems. . .

Both for empirical and theoretical GA research, simple and extreme fitness functions

provide a first starting point. Different forms of GA behavior can be cast to a number

of archetypal forms induced by these extreme problems. Understanding the GA on

them is a prerequisite for understanding it on daily-life search problems.
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5.1 Flat fitness

The simplest of all fitness functions is the constant function. Yet, the dynamics of

the GA on a flat fitness landscape are non-trivial, and understanding them helps

to predict how the algorithm will behave in a flat or uninformative area of a much

more complex fitness landscape. We briefly discuss two issues here, genetic drift and

Geiringer’s theorem. Both have extensively been studied in population genetics.

Genetic drift is a phenomenon that is inherently related to sampling and finite

populations. Suppose an initial population contains n different individuals and

selection (without any selective pressure) is repeatedly applied. All individuals have

an equal probability of being selected, but chances are that some will be lost, and

others duplicated. In this way, the population looses individuals, and therefore

diversity, and ends up with one individual having spread n copies of itself. In general,

selective pressure and genetic drift are the two factors that reduce the diversity in

the population.

Geiringer’s theorem [22] shows that for a fairly general set of crossover operators,

the limit of repeatedly applying such an operator (without mutation and selection)

results in a population that is in linkage equilibrium. The probability of a string p =

p �−1 . . . p0 appearing in a population P in linkage equilibrium is given by Robbins’

proportions

PPPP (p) =

�−1∏
i=0

PPPP (p i),

where PPPP (pi) is the marginal frequency of value p i at bit position i. The ultimate

question that arises in the GA setting is to determine the dynamics of this process

under the influence of finite sampling (genetic drift) and mutation (see e.g., [90]).

5.2 One needle, two needles

One step away from the constant fitness function is the needle-in-a-haystack prob-

lem. Here, exactly one out of the 2� individuals is assigned a non-zero fitness value.

It is straightforward to show that when the location of the needle is unknown, ex-

haustive enumeration is the most efficient algorithm to find it; clearly, the expected
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time to reach the solution is exponential in the string length. Many optimiza-

tion problems contain needle-in-a-haystack problems, although they do not always

present themselves so clearly. When the global optimum is hidden in an exponen-

tial set of local optima of almost the same fitness, for example, we also speak of a

needle-in-a-haystack.

GAs were originally conceived as algorithms to mimic natural evolution, rather

than as optimization algorithms. In this context, the needle-in-a-haystack problem

transforms from an extreme optimization problem to a simple model problem for

evolution in a changing environment, very similar to Eigen’s quasi-species model.

The setting is as follows. Every τ time steps, the needle is replaced by a new

one located in the near Hamming neighborhood of the old one. Thanks to its

population and the constant source of diversity in the population provided by the

mutation operator, the GA stands a chance of tracking the movement of the needle.

Under proper conditions on the mutation rate and the cycle length τ , the population

contains a number of copies of the needle (the species) and a number of mutants of

this needle (the quasi-species).

This situation touches the notion of effective fitness [89]. Although the mutants

have the same, low fitness as any other string in the search space except for the

needle, it is opportune to have the mutants in the population since one of them may

become the next needle. In a way their effective fitness is higher than that of the

strings far away.

Occurring further in this book (chapter II, section 4) is a fitness function with

two peaks at maximal Hamming distance from each other. We have dubbed this

function the Camel function, though it is probably better known as a two-peak

problem. With a population sufficiently large, it is possible to maintain copies of

both peaks in the population in a stable way. In this situation, most of the so

called “interspecies” crossovers, crossovers where each of the parents belong to the

(quasi)species of different peaks, are wasted: they yield offspring that are far away

in Hamming distance from both peaks, and they stand no chance to survive more

than a few generations.
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Figure I.2: A number of unitation functions. The parabola in each figure gives an in-

dication of the number of individuals that are mapped to a fitness value, in logarithmic

scale.

5.3 Unitation functions

A unitation function is a function on Ω = {0, 1}� that is defined in terms of the

number of 1s in a string. Formally,

f : Ω → R : s �→ h(u(s)),

where u(s) denotes the number of 1s in s and h is a function which maps {0, . . . , �}
to the real numbers. A few examples are shown in figure I.2; actual fitness values

have been omitted.

We have already encountered the onemax problem in section 1. It is about the

most important toy problem, and the dynamics of many variants of GAs (quite

often without crossover) running on onemax have been studied in great detail (e.g.,

[65], [73]). To give an impression about the complexity of the GA dynamics on this
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simple problem, we note that using the dynamical systems approach, Wright and

co-workers only recently obtained exact equations for the infinite population model

and a GA with a crossover that permanently maintains linkage equilibrium [110].

The twomax or twin peaks [16] problem is a typical example of a problem where more

than one area of the search space is worth investigating. Initially, the population

contains individuals with low fitness and an average number of 1s of �/2. Some indi-

viduals will be fitter, i.e., have either an excess of 0s or 1s, but due to the symmetry

of the problem, neither of the directions will be significantly overrepresented. After

only a few generations, however, stochastic errors break this balance, and the prob-

lem becomes similar to a onemax problem [100]. One optimum is reached quickly,

the other optimum is ignored.

Breaking the symmetry of the twomax problem may result in a deceptive problem.

The particular form shown is called a trap function [1]. Depending on the relative

heights of the optimal and sub-optimal peaks and the location of the fitness 0 strings

(closer to all 1s, or closer to all 0s), one can control the fraction of times the GA is

deceived and led in the direction of the sub-optimal peak.

The extreme case of deception is shown by the fully deceptive function [28, 108],

where the optimum is a lonely individual and the GA is led to its complement.

The probability of the GA ever hitting this optimum is next to zero; a black-box

algorithm will not be able to distinguish the problem from a zeromax problem where

the optimum is missing.

Finally we list the basin-with-a-barrier problem [81], for which approximate GA

dynamics have been obtained using statistical mechanics techniques. It contains

one local optimum that attracts the population, which will then stay there (due to

entropy, the average number of 1s in the population will be slightly less that that

of the local optimum) until a mutation causes a jump out of the basin of attraction

to the global optimum.
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H1 = 11111111 ######## ######## ######## ######## ######## ######## ########

H2 = ######## 11111111 ######## ######## ######## ######## ######## ########

H3 = ######## ######## 11111111 ######## ######## ######## ######## ########

H4 = ######## ######## ######## 11111111 ######## ######## ######## ########

H5 = ######## ######## ######## ######## 11111111 ######## ######## ########

H6 = ######## ######## ######## ######## ######## 11111111 ######## ########

H7 = ######## ######## ######## ######## ######## ######## 11111111 ########

H8 = ######## ######## ######## ######## ######## ######## ######## 11111111

Opt = 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

Figure I.3: The schemata defining Royal Road function R1.

H9 = 11111111 11111111 ######## ######## ######## ######## ######## ########

H10 = ######## ######## 11111111 11111111 ######## ######## ######## ########

H11 = ######## ######## ######## ######## 11111111 11111111 ######## ########

H12 = ######## ######## ######## ######## ######## ######## 11111111 11111111

H13 = 11111111 11111111 11111111 11111111 ######## ######## ######## ########

H14 = ######## ######## ######## ######## 11111111 11111111 11111111 11111111

Opt = 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111

Figure I.4: The extra schemata defining Royal Road function R2.

5.4 Crossover-friendly functions

Royal Road functions

In this book the Royal Road functions developed by Mitchell, Forrest and Holland

[60] are studied. Initially developed to yield a “royal road” for the crossover operator,

it was shown about a year later by the same authors [18] that a mutation based hill

climber actually outperforms the GA by a factor of ten if one counts the number of

fitness evaluations as a measure of complexity.

This is in contrast to the Real Royal Road functions that appeared only recently

[44]. They are real in the sense that they do what they promise: any mutation

based optimization algorithm requires exponential time to solve them, and a very

broad class of GAs with crossover (uniform or one-point) can get to the solution

in polynomial time. They have been carefully designed to achieve this goal; for

this reason, they are less likely to give rise to equal insights in the working of the

crossover operator.

The original Royal Road functions R1 and R2 are defined as follows. Consider the
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schemata

H1 = 1(8)#(56), H2HH = #(8)1(8)#(48), H3H = #(16)1(8)#(40), . . . , H8HH = 1(56)#(8),

H9HH = 1(16)#(48), H10 = #(16)1(16)#(32), . . . , H12 = #(48)1(16),

H13 = 1(32)#(32), H14 = #(32)1(32),

where we denote by a(n) the string aa . . . a consisting of n copies of a. Figures I.3

and I.4 show the schemata fully written out. Then

R1(s) = 8
8∑

i=1

[s ∈ HiHH ],

R2(s) = 8

8∑
i=1

[s ∈ HiHH ] + 16

12∑
i=9

[s ∈ HiHH ] + 32

14∑
i=13

[s ∈ HiHH ],

with the brackets denoting the indicator function. The functions were designed

as the simplest search problems on which the GA performs “as expected” if one

assumes correctness of the building block hypothesis. The different schemata are

the intermediate stepping stones or building blocks which need to be combined by

crossover to reach the optimum. The average fitness of R1 is

1

264

∑
s∈Ω

R1(s) =
1

264

∑
s∈Ω

8

8∑
i=1

[s ∈ HiHH ] =
8

264

8∑
i=1

|HiHH | =
1

4
,

with |HiHH | denoting the number of elements of HiHH . We compute the the fitness of the

schema HiHH (i = 1, . . . , 8) under R1 as 8 plus the average fitness of a 56-bit Royal
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Road function R′
1 : s ∈ Ω′ = {0, 1}56 �→�� R1(11111111s):

f(HiHH ) =
1

|HiHH |
∑
s∈Hi

f(s)

= 8 +
1

256

∑
s∈Ω′

R′
1(s)

= 8 +
1

256

∑
s∈Ω′

8
8∑

i=2

[s ∈ H ′
iHH ]

= 8 +
8

256

8∑
i=2

∑
s∈Ω′

[s ∈ H ′
iHH ]

= 8 +
8

256

8∑
i=2

|H ′
iHH | = 8 +

8

256
· 7 · 248 =

263

32
= 8.218 . . .

This is a lot higher than the function average. In the function R2, “reinforcements”

are built in that provide additional stepping stones. It was therefore expected that

a GA would perform better on R2 than on R1.

A phenomenon called hitch-hiking prevents this from happening; it fact, the GA

consistently performs better on R1. An individual A contained in H12 but not in

H6HH dominates an individual B not contained in H7 or H8HH (and therefore not in H12)

but contained in H6HH , assuming that A and B are similar on the other schemata.

Even with relatively weak selection, A will suppress B after a few generations —

and make building block H6HH disappear. This situation is visible in figure I.5, where

H6HH is almost omnipresent until, around generation 20, H12 appears. The few 0s that

cause A not to belong to H6HH are said to hitch-hike along with the strong building

block H12. The GA then has to wait for a combination of mutation and crossover

events that recreate this building block. Due to lower relative differences in the

fitness of building blocks, R1 provides better opportunities for the GA to combine

the blocks.

H-IFF and Ising

The hierarchical if-and-only-if (H-IFF) problem [107] has been designed by Watson

and co-workers as a problem which is extremely hard to solve for mutation-based
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Figure I.5: Number of individuals in schemata H5, H6HH and H11 (top plot) and H7, H8HH

and H12 (bottom plot) for one GA run on R2 with population size 100, binary tournament

selection, one-point crossover at rate 0.8, and ordinary mutation at rate 1/64. This figure

illustrates the hitch-hiking effect detailed on page 39.
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Figure I.6: The building block representation of a H-IFF problem and a one-dimensional,

non-circular Ising problem, both with string length 8. All black building blocks are satis-

fied; all white building blocks are not satisfied.

algorithms, and as easy as possible for algorithms that employ crossover. It is defined

by the recursive function

f(A) =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
1, if |A| = 1,

|A| + f(AL) + f(AR), if |A| > 1 and (∀i : ai = 0 or ∀i : ai = 1),

f(AL) + f(AR), otherwise,

with A a block of bits {a1, . . . , an}, |A| the size of the block and AL and AR

respectively the left and the right halves of A (i.e., AL = {a1, . . . , an/2}, AR =

{a(n/2)+1 . . . , an}). The string length � must equal 2k, with k an integer indicating

the number of hierarchical levels. Figure I.6 gives a building block representation

of a H-IFF problem with string length 8. A building block is satisfied if all corres-

ponding string positions have the same value. The fitness contribution of a satisfied

building block is equal to its size. In the figure, all black building blocks are satisfied,

all white ones are not.

Note that the H-IFF problem has two optima, the string containing only 1s and the

string containing only 0s. Moreover, it contains spin-flip or bit flip symmetry (see

[70] in the context of GAs), a symmetry which is characterized by fitness invariant

permutations on the alphabet. These properties are shared by the one-dimensional

Ising problem, whose roots lie in statistical physics [43]. Its most convenient form

for this introduction is

f(s) =

�−1∑
i=0

δsi,si+1
with δsi,sj

=

{
1 if si = sj ;

0 otherwise.

Here, the problem is seen as a circle, with s� ≡ s0. The problem has the same
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optima as H-IFF: the strings of all 1s and all 0s.

The two problems induce, to a large extent, similar behavior on both mutation-based

and crossover-based algorithms. The problems of mutation are related to the fact

that the operator has no “global view” of the problem: improvements can be made

in different parts of the individual, but in an unsynchronized way: sometimes to 0,

sometimes to 1, but rarely consistently to one of the two. Consider for example the

16-bit string

0001111100001111 (I.1)

In the circular Ising problem, the fitness of this individual is only 4 away from the

optimum. No mutations exist that improve the fitness, but a number of neutral

steps are possible: every bit whose left or right neighbor has a different value can

be mutated without changing the fitness. The following are examples of neutral

mutations:

0000111100001111 0011111100001111 (I.2)

The first mutation leads to an individual which is in Hamming distance even further

away from one of the two optima; the second mutation leads to a string with more

1s than 0s and can be considered as a step in the right direction. But how does the

mutation operation know?

In the H-IFF problem, individual (I.1) has a fitness of 16 × 1 + 7 × 2 + 3 × 4 = 42.

Two mutations can improve this value; they lead to the first individual of (I.2),

with fitness 16 × 1 + 8 × 2 + 4 × 4 = 48, and the second of (I.2), with fitness

16 × 1 + 8 × 2 + 3 × 4 = 44. Both are local optima. To reach the individual

1111111100001111

the fitness has to drop temporarily to 42; to then reach the string of all 1s, the third

block of 4 bits needs to be broken up! But because the mutation operator has no

global overview, it could also choose to break up the fourth block. . .

The crossover operator can combine large blocks of bits together, and succeed in

jumping the large fitness barriers for mutation. The main condition, however, is

sufficient genetic diversity: these blocks actually need to exist in the population.

Without a system that forces this diversity, the GA evolves to populations which at
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certain positions only contain blocks of 1s or 0s. It then has to rely on the mutation

operator to introduce these blocks – which is an extremely slow process. An in-depth

discussion can be found in [100].

6 . . . and more serious search problems

Of course, the ultimate goal is to know how a GA behaves on problems that you

actually care about optimizing. A large part of the evolutionary algorithms literature

contains papers whose main message is: “I am working on such and such search

problem, and by fiddling a bit with the representation and the parameters, and

adding some gizmos, I have constructed a GA that is pretty good at solving my

problem. In fact, it performs even better than the three other algorithms I was

using before.” This type of literature is very useful if the problem at hand is very

similar to one for which a successful GA has been found. Even if the problem is

dissimilar, reading this type of papers is important in the sense that they teach the

tricks that you need to get a GA working efficiently.

One of the main goals of GA theory is to give hard evidence of why and when certain

‘tricks’ increase the performance of a GA. The first step towards this goal, however,

is to understand the structure of these realistic problems. Initially, this need not be

done in the context of the very complex GA; actually, it need not even be done in

the context of any search algorithm.

The theory of computational complexity (e.g., [71]) classifies search problems on a

mathematical basis, without being much concerned about the pecularities of specific

algorithms. If a problem is in the class P, to name a first, important class, it has

been proved that an algorithm exists that can solve all instances of this problem

in a time which is bounded by a polynomial in the size of the instance. Many real

world search problems have been shown to be in NP, a class with two important

properties: once an algorithm is shown to solve all instances of one NP-completePP

problem in polynomial time, all problems in NP are solvable in polynomial time and

as a result, P would equal NP. The second property is that this equality seems very

unlikely. Of course, when a problem is in P, there is no implication that a GA will
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be able to solve all instances in an expected time that is bounded by a polynomial

of the size of the instance. Similarly, a fairly large set of instances of a problem

that is shown to be in NP may be solved efficiently by a GA. To conclude: the

complexity classification of search problems is important, but it rarely affects the

GA practitioner. If a problem is not (yet) shown to be in P, a heuristic algorithm

needs to be devised, and it might well turn out that this algorithm will efficiently

solve most of the real world instances that show up. Some instances, however, will

present difficulties for the heuristic, resulting in a running time that is exponential

in the size of the instance.

The instances of an NP-complete problem share important structural properties.PP

The word ‘structure’ here is used in the context of a topology on the search space;

for simplicity, the metric and hence search landscape of the most obvious mutation

operations are considered first. An important result of landscape theory shows

that many such obvious choices of operators are indeed very natural choices, in the

sense that the landscape turns out to be an eigenspace of the Laplacian matrix [88]

of the operator graph. This is the case for the Travelling Salesman Problem and

transposition or inversion as mutation operator, for the graph coloring problem with

ordinary mutation (color-replacement), and so on.

Even though they share a number of structural properties, different instances may

present different degrees of problem difficulty for an optimizer such as a GA. This

can be exploited to construct a diverse set of problem generators, where both struc-

tural properties and problem difficulty can be predicted beforehand. Consider, for

example, the NP-complete class ofPP binary constraint satisfaction problems [96]. They

have the general form

f : Σ� → R : s �→��
(

�

2

)
−

∑
0≤i<j<�

gij(si, sj),

were Σ is a multary alphabet (|Σ| > 2), and gij : Σ × Σ → {0, 1} for all i < j. A

string for which the fitness is maximal, i.e.
(

�
2

)
, is called a solution. Instances can

be randomly generated by, for example, performing a Bernoulli trial for each of the

gij(a, b), with a fixed probability p of success. When p is close to zero, instances are

likely to have many solutions; when p is close to one, the opposite is true. When
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going from zero to one, a region called the mushy region is observed where the average

number of solutions of the instances is around one. These instances are typically

hard to solve: it is hard to find the solution, or equally hard to disprove the existence

of a solution. With the problem size increasing, the mushy region becomes smaller;

in the limit of infinite problem size, a phase transition from solvable to unsolvable

can be shown to occur [109].

7 A priori problem difficulty prediction

The aim of a priori problem difficulty prediction is to make an educated guess about

the performance of a certain type of GA on a particular search problem without

actually running the GA. The prediction should be based on a number of properties

of the search problem and its representation. Preferrably, the amount of fitness

evaluations carried out by a statistic to assess a property is lower than the amount

the GA is expected to do, but this is not really the point. If information about the

whole search space is needed, so be it. The more fundamental question is: what are

the properties that capture the landscape as the GA sees it?

7.1 Fitness–distance correlation

A well-known example of a property of a search problem and its representation

is fitness–distance correlation [46]. The statistical correlation between the fitness

values of individuals and their Hamming distance to the optimum is computed and

plotted. When there is a negative correlation, i.e., decreasing the distance to the

optimum increases the fitness, then the search problem is predicted to be easy. The

onemax problem is the archetypal problem where this negative correlation is perfect.

When there is no correlation, the search problem is predicted to be difficult. The

case of a positive correlation (the closer one gets to the optimum, the worse the

fitness becomes) relates to deception: the algorithm is predicted to be led away

from the optimum.

Of course the fitness–distance correlation as described here is actually a property of

the Hamming landscape, and not of the “GA landscape”: it does not include any
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information about crossover, selection or population effects. To obtain an idea about

the performance or usefulness of a crossover operator, the correlation coefficient [55]

of this operator can be computed. The procedure is similar to that of fitness–distance

correlation: repeatedly sample parent individuals, cross them over, and compute the

correlation between the average fitness of the children and that of the parents. If

the sample is well chosen, i.e., it contains individuals that are likely to be crossed

over by a GA, this coefficient will be informative about the action of the crossover

operator in a GA.

Especially for fitness–distance correlation, a fair number of publications (e.g., [2, 48])

have demonstrated that a good correlation in the Hamming landscape does not ne-

cessarily lead to a problem that is easy for a GA, and the other way round. Note

that this does not invalidate the concept of computing a correlation between fitness

and distance as a predictor; it merely says that this property of the Hamming land-

scape is not representative for GA behavior. Ideally, one should compute whether

populations that are fitter, for example in the sense that the average fitness of their

individuals is higher, are also closer to a population containing optima, where closer

is defined in terms of the number of generations that the GA requires to change the

suboptimal population into the optimal [45]. Problems for which this true fitness–

distance correlation is negative can be predicted to be easy with higher confidence.

Sadly enough it seems unrealistic to expect such a statistic to exist.

7.2 Interactions

The term epistasis in a biological context refers to a linkage between genes. In the

context of search landscapes, we use the term interaction and distinguish between

the range of the interactions, denoting the amount of variables involved in the in-

teractions, and their structure, which determines which interactions are present and

which are not. Functions of the form

f : {0, 1}� → R : s �→��
∑

0≤i<�

gi(si) (I.3)

are clearly free from interactions between the variables. We call them first order

functions and note that they are not the only functions that are epistatically free.
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Replacing the sum by a product, for example, yields another epistatically free class.

The class of second order functions is defined as

f : {0, 1}� → R : s �→��
∑

0≤i<�

gi(si) +
∑

0≤i<j<�

gij(si, sj). (I.4)

Next to the first order contributions to the fitness sum, contributions are possible

whose values depend on two variables simultaneously. Typical members of this

class are the (NP-complete) graph coloring [20] and binary constraint satisfactionPP

problems as shown in section 6. A search problem consisting of interactions of order

3 or less is the famous (NP-complete) 3-SAT problem [20] ; the generalisation calledPP

K-SAT extends this to interactions of order K or less.

The longer the interactions, the higher is the potential effect of a small move in

Hamming distance on the fitness. The correlation length [55] measures the predict-

ability of fitness values as one goes along a random walk in the Hamming landscape.

Problems with short range interactions have a high correlation length, whereas long

range interaction problems may show much lower correlation lengths. In general,

problems with short range interactions are easier to solve than problems with long

range interactions: the extremes are the first order functions (no interactions, easy

to solve) and random functions (full interactions, extremely hard to solve).

Next to the maximal order of the interactions, the interaction structure may also

be important. It defines which interactions are present in a problem, and which are

not. An example to illustrate this is the Ising model: the variables interact only

with their nearest neighbor if ordered on a line. A two-dimensional Ising model also

exists: the variables are put on a grid and again each variable interacts with its

four nearest neighbors. Whatever values the interactions take, the one-dimensional

Ising problem is optimizable in polynomial time by a divide-and-conquer algorithm.

If the values of the interactions of the two-dimensional model are randomly drawn

from [0, 1] (this is the SK-model [87]), finding an optimal configuration becomes an

NP-hardPP 2 search problem.

We end this section by mentioning the famous NK-landscapes, developed by Kauff-

man [49]. They are defined as the sum of N random subfunctions; each subfunction

2
NP-hard is the optimization variant;PP NP-complete stands for decision problems.PP
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fiff is defined on position i and K other, arbitrarily chosen bit positions. Clearly, an

NK-landscape with K = 1 belongs to the class of second order functions. Only N

pairs of variables are allowed to interact.

7.3 The epistasis measure

The epistasis measure that we study in this book computes the least squares distance

of a fitness function or search problem to the class of first order functions defined

above. A mathematical definition and in-depth treatment is given in chapter II, but

we do not want to delay answering the question of its practical relevance. In the

early 1990s, epistasis measures were “hot” and actively investigated. The results of

research in the last decade, however, have shed light on many of its shortcomings.

Even though a number of them can be easily be overcome, some even in a fairly

trivial way, enough evidence remains to mistrust a classification of problem difficulty

for GAs based on this measure. We now present some of its limitations as an a priori

measure, and possible remedies.

First of all, the epistasis measure as we study it in this book is a static measure,

i.e., it incorporates no information about the dynamics of a GA. An example in

chapter III (page 99) makes it very clear that different GA settings may result in

very different behavior on exactly the same function. One way to add a touch of

GA to it is to use samples of the search space generated by successive populations

of one or more GA runs to compute it [67].

Secondly, the measure can separate first order functions from higher order functions,

but by randomly generating instances, one can easily show that it cannot reliably

differentiate between different higher orders of interaction. In favor of the measure,

however, we note that experiments show that on average, and in the case of all

interactions randomly drawn from the same set, n-th order functions have a lower

epistasis value than n + 1-th order functions.

Thirdly, Reeves [77] showed that it is invariant to changes in sign of certain interac-

tions, which means that it cannot distinguish between an interaction which merely

reinforces and one which counteracts. An example of the former are the schemata

H9HH , . . . , H14 in the Royal Road function R2. A counteracting interaction would for
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example penalize the presence of H9HH , such that the presence of H1 and H2HH together

is inferior to the presence of either of them.

In general, it seems overly ambitious to try and capture all the richness of the vast

amount of very different search problems into this one number representing the

distance to one particular class of simple search problems. If the only easy problems

for a GA looked like first order functions, the idea of measuring the distance from one

set seems reasonable. As the case of the reinforcing and counteracting interactions

shows, however, this is certainly not the case.

As a result of these weaknesses, no significantly large class of relevant search prob-

lems has shown up where the epistasis measure can be used as a reliable problem

difficulty predictor. We will show in this book, however, that it can accurately

classify instances belonging to the class of generalized Royal Road functions, for

example. It performs equally well within the class of template functions, but fails

for some simple unitation functions.

The remainder of this book deals with the mathematical aspects of one epistasis

measure. Starting from the original definition by Davidor, it introduces, in chapter

II, a different formulation based on linear algebra. In chapter III, the epistasis of

a number of example function classes is computed analytically. Chapter IV shows

that it is easier to compute epistasis in Walsh space. Finally, in chapters V and VI,

the results of chapters II and IV are generalized to fitness functions over non-binary

alphabets.
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Chapter II

Epistasis

The goal of chapter I was to put epistasis measures in the context of GA research.

This chapter deals with epistasis variance in full technical detail. We start with

Rawlins’ definition and Davidor’s formalization, and transform this formalization

into a convenient matrix formulation which is used throughout the book. We then

deal with the rank and eigenspaces of the epistasis matrix G, and present a couple

of simple examples to illustrate the techniques. Next, we show in two different ways

that the class of functions with minimal epistasis is exactly the class of first order

functions defined by (I.3) on page 46. Finally, we show which class of functions yield

a maximal epistasis value.

Note that Appendix B gives a brief account of the linear algebra used in this and

the following chapters.

1 Introduction

Rawlins [75] was the first author to study epistasis in the context of GAs. He points

out that the objective function may intuitively behave in two extreme ways:

• There is zero epistasis. In this case, every gene is independent of every other

gene. That is, there is a fixed ordering of fitness (contribution to the overall

objective value) of the alleles of each gene. It is clear that this situation can



only occur if the objective function is expressible as a linear combination of

the individual genes.

• There is maximum epistasis. In this case, no proper subset of genes is inde-

pendent of any other gene. Each gene is dependent on every other gene for

its fitness. That is, there is no possible fixed ordering of fitness of the alleles

of any gene (if there where, then at least one gene would be independent of

all other genes). This situation is equivalent to the objective function being a

random function.

The first formal definition of the notion of epistasis was given by Davidor [11, 12]

— we refer to the next section for details. Let us just point out here that Davidor’s

definition is based on the idea that, if a representation has very low epistasis, it

should probably be processed more efficiently by a GA. If it contains high epistasis,

there is too little structure in the solution space and the search process will prob-

ably settle on a local optimum. Starting from these principles, Davidor linearly

decomposes the representation in order to develop a method for the prediction of

the amount of nonlinearity embedded in a given representation. Quantifying this

amount of nonlinearity should provide an estimate of the suitability of the problem

to be processed efficiently by a GA.

2 Various definitions

In this section, we will define the notion of epistasis variance introduced in [12], as

well as other epistasis measures derived from the original definition.

2.1 Epistasis variance

Let us fix a fitness function f on the search space Ω = {0, 1}�. Given a population

P in the search space Ω, the average fitness value of the population is given by

f(P ) =

∑
s∈P f(s)

|P | ,
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where |P | denotes the cardinality of P . The excess fitness value of a string s ∈ Ω

with respect to P is then given by f(s) − f(P ).

If we denote by Pi,aPP the subset of P consisting of all strings with allele a on locus i,

the i-th average allele value of s is defined to be

Ai,P (s) =

∑
t∈Pi,sPP

i
f(t)

|Pi,sPP
i
| ,

the excess allele value as Ei,P (s) = Ai,P (s) − f(P ) and the excess genic value as

EP (s) =
�−1∑
i=0

Ei,PEE (s).

A linear “prediction” of the fitness value of a string may then be given by AP (s) =

f(P )+EP (s). The difference εP (s) = f(s)−AP (s) may thus be viewed as a measure

of the epistasis of a string. If we expand the previous expression, we obtain the closed

formula

εP (s) = f(s) −
�−1∑
i=0

1

|Pi,sPP
i
|
∑

t∈Pi,sPP
i

f(t) +
� − 1

|P |
∑
t∈P

f(t).

As a special case, if we consider P = Ω, we deal with “global” epistasis:

ε(s) ≡ εΩ(s) = f(s) −
�−1∑
i=0

1

2�−1

∑
t∈Ωi,si

f(t) +
� − 1

2�

∑
t∈Ω

f(t). (II.1)

Let us also introduce the following notions:

• the epistasis variance of a function is the variance of the fitness values of each

string in the search space with respect to the predicted string value A(s):

σ2
ε =

1

|Ω|
∑
s∈Ω

ε2(s),

• the fitness variance is defined as

σ2 =
1

|Ω|
∑
s∈Ω

(f(s) − f(Ω))2,
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• the genic variance is defined as

σ2
a =

1

|Ω|
∑
s∈Ω

E(s)2.

These notions are linked through the following result due to Manela and Campbell

[56]:

Theorem II.1. Let σ2 be the fitness variance, σ2
a the genic variance and σ2

ε the

epistasis variance. Then

σ2 = σ2
a + σ2

ε .

Let us stress the fact that whereas epistasis is a property concerned with interactions

between bits, epistasis variance essentially measures the amount of epistasis in a

given function representation.

2.2 Normalized epistasis variance

Epistasis variance is meant to measure interactions between genes. These interac-

tions will, of course, not change if we multiply the fitness function by a constant.

Since, however, the epistasis variance does change, we are led to remedy this by

considering normalized versions of epistasis variance.

A first way to realize this was proposed by Manela [56], who used the proportion of

epistasis, defined as PεPP = σ2
ε/σ

2.

Alternatively, one may also first normalize the fitness function and then calculate

the associated epistasis variance (we introduce a dependency on f in our notations):

σ∗(f) = σ2
ε

(
f

||f ||
)

=
σ2

ε (f)

||f ||2 .

Here we use

f =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
f (00 . . . 0)

f (00 . . . 1)
...

f (11 . . . 1)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .
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We call σ∗(f) the normalized epistasis variance of f . Omitting the factor 1
|Ω| in the

definition of epistasis variance, we obtain the notion of epistasis value, given by

ε2
P (f) =

∑
s∈P

ε2
P (s)

and

ε2(f) ≡ ε2
Ω(f) =

∑
s∈Ω

ε2(s),

and that of normalized epistasis value, defined as

ε∗(f) = ε2

(
f

||f ||
)

=
ε2(f)

||f ||2 .

As we will see later, this normalized epistasis value (or normalized epistasis, as we

will usually refer to it) only takes values between 0 and 1. If we restrict to positive

functions, the actual maximum bound will be lower.

2.3 Epistasis correlation

Let us conclude this section with a last quantitative approach to epistasis, proposed

by Rochet et al [80]. The notion we refer to is the so-called epistasis correlation,

defined to be the correlation between the fitness function and the approximation A,

essentially defined in section 2.1, over a given population. More precisely,

corrε(f) =

∑
s∈P (f(s) − f(P ))(A(s) − A(P ))√√∑

s∈P (f(s) − f(P ))2
√√∑

s∈P (A(s) − A(P ))2
,

where A(P ) = 1
|P |
∑

s∈P A(s) is the average over the population P of the approxim-

ation A. Epistasis correlation takes values between 0 and 1. Note also that maximal

epistasis occurs for an epistasis correlation value of 0 and minimal epistasis for the

value 1.

3 Matrix formulation

3.1 The matrices G� and E�

The main purpose of this section is to reformulate the definition of normalized

epistasis, using elementary linear algebra, in order to simplify both its calculation
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and the study of its main properties. Let us start by introducing the vector

ε =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
ε (00 . . . 0)

ε (00 . . . 1)
...

ε (11 . . . 1)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

We will also write f0ff , . . . , f2ff �−1 for f(00 . . .0), . . . , f(11 . . . 1), so

f =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f0ff
...

f2ff �−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

For any 0 ≤ i, j < 2�, put

eij =
1

2�
(� + 1 − 2dij) ,

where dij is the Hamming distance between i and j (the number of bits in which the

binary representations on i and j differ; see section 1 of chapter I). We will rewrite

the identity (II.1) as follows. First, note that for all t ∈ Ω, the value f(t) occurs

� − dst times in the expression
∑�−1

i=0
1

2�−1

∑
t∈Ωi,si

f(t), hence

�−1∑
i=0

1

2�−1

∑
t∈Ωi,si

f(t) =
1

2�

∑
t∈Ω

[2(� − dst)f(t)].

The entries eij define a matrix E� = (eij) ∈ M2MM � (Q) (the set of all rational-valued

square matrices of size 2�). From the previous remark, it now easily follows that

ε(s) = f(s) − 1

2�

∑
t∈Ω

(2(� − dst) − (� − 1)) f(t)

= f(s) −
∑
t∈Ω

estf(t),

and therefore

ε = f − E�f .

It thus finally follows that the epistasis value of f is given by

ε2(f) =
∑
s∈Ω

ε2(s) = ‖ε‖2 .
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Define G� = 2�E� ∈ M2MM � (Z), i.e., G� = (gij), with gij = � + 1 − 2dij for all

0 ≤ i, j < 2�. For small values of �, the corresponding matrices are

G0 = (1), G1 =

(
2 0

0 2

)
, G2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
3 1 1−1

1 3−1 1

1−1 3 1

−1 1 1 3

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

The matrices G� may also be defined recursively by

G0 = (1), G� =

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)
,

where

U � =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1 · · · 1
...

. . .
...

1 · · · 1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ M2MM � (Z) ,

for every positive integer �.

An interesting and useful property of G� is given by the following result:

Lemma II.2. With the previous notations, we have:

1. The sum of the elements of any row or column of G� is given by

2�−1∑
j=0

gij =
2�−1∑
i=0

gij = 2�.

2. The sum of all the elements of G� is given by

2�−1∑
i,j=0

gij = 22�.

Proof. Take i ∈ {0, . . . , 2� − 1}. For any 0 ≤ j < 2�, clearly ˆ = 2� − 1 − j ∈
{0, . . . , 2� − 1} has the property that dij + diĵ = �. It thus follows that

2�−1∑
j=0

gij =
2�−1−1∑

j=0

(gij + giĵ) =
2�−1−1∑

j=0

2(� + 1 − (dij + diĵ)) = 2�−12 = 2�,
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hence also that
2�−1∑
i,j=0

gij =
2�−1∑
i=0

2�−1∑
j=0

gij =
2�−1∑
i=0

2� = 22�.

Another recursion formula for G� involves the Kronecker product of matrices (see

section 1.1 of appendix B). Indeed, we may prove:

Lemma II.3. For any pair of positive integers q ≤ p, we have:

Gp = U p−q ⊗ Gq + (Gp−q − U p−q) ⊗ U q.

Proof. As G0 = U 0 = (1), the statement is obvious for q = 0 and q = p. Take q = 1

and note that for any 0 ≤ i < 2�−1 and 0 ≤ j < 2�−1 the difference between g2i,j and

g2i+1,j and between gi,2j and gi,2j+1 is always 2. So,

Gp = Gp−1 ⊗ U 1 + U p−1 ⊗ (G1 − U 1)

= U p−1 ⊗ G1 + (Gp−1 − U p−1) ⊗ U 1.

For q = p − 1, note that

U 1 ⊗ Gp−1 + (G1 − U 1) ⊗ U p−1 =

(
Gp−1 Gp−1

Gp−1 Gp−1

)
+

(
1−1

−1 1

)
⊗ U p−1

=

(
Gp−1 + U p−1 Gp−1 − U p−1

Gp−1 − U p−1 Gp−1 + U p−1

)
= Gp.

Let us now argue by induction on q. Pick 0 < q ≤ p, then

U p−q ⊗ Gq + (Gp−q − U p−q) ⊗ U q

= U p−q ⊗ (U 1 ⊗ Gq−1 + (G1 − U 1) ⊗ U q−1) + (Gp−q − U p−q) ⊗ U q.

As this is equal to

U p−q+1 ⊗ Gq−1 + (U p−q ⊗ G1 + (Gp−q − U p−q) ⊗ U 1 − U p−q+1) ⊗ U q−1,

we obtain

U p−q+1 ⊗ Gq−1 + (Gp−q+1 − U p−q+1) ⊗ U q−1 = Gp.

This proves the assertion.
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We may also prove:

Proposition II.4. For any positive integer �, we have G2
� = 2�G�.

Proof. For � = 0, clearly G2
0 = (1), and the statement is true. Let us assume the

statement to hold true for length 0, . . . , � − 1 and let us prove it for length �. Since

U 2
� = 2�U �, it follows from the induction hypothesis that

G2
� =

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)2

=

(
2G2

�−1 + 2U2
�−1 2G2

�−1 − 2U 2
�−1

2G2
�−1 − 2U 2

�−1 2G2
�−1 + 2U2

�−1

)

= 2�

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)
=2�G�.

Note that the previous result implies that the matrix G� has only eigenvalues 0 and

2�. Indeed, if x ∈ R2�

is an eigenvector with eigenvalue λ, it follows from G�x = λx

that

2�λx = 2�G�x = G2
�x = λ2x,

whence λ = 0 or λ = 2�, as claimed.

Corollary II.5. For any positive integer �, the matrix E� is idempotent.

Proof. This follows immediately from the fact that E� = 2−�G�.

As a consequence, E� has eigenvalues 0 and 1.

The previous results allow for an elegant description of the epistasis value of f in

terms of matrices:

Theorem II.6. Let f be a fitness function over the search space Ω. The epistasis

value of f is given by

ε2(f) = tff − tfE�f ,
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and the normalized epistasis value of f by

ε∗(f) =
ε2(f)

‖f‖2 = 1 −
tfE�f

tff
.

Proof. This follows immediately from

ε2(f)= ‖ε‖2

= t(f − E�f)(f − E�f)

= tff − tfE�f .

As the matrix E� is idempotent and symmetric, it is an orthogonal projection (the-

orem B.29), hence

0 ≤ ε∗(f) ≤ 1.

3.2 The rank of the matrix G�

In order to describe the eigenspaces of the matrix G� (and of E�), we first calculate

its rank:

Proposition II.7. For any positive integer �, we have

rk (G�) = � + 1.

Proof. Let us again argue by induction, the statement being obvious for � = 0.

Clearly,

G� =

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)
may be transformed to (

G�−1 0

0 U �−1

)
by elementary row and column operations, showing that

rk (G�) = rk

(
G�−1 0

0 U �−1

)
= rk (G�−1) + 1 = � + 1,

indeed.
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Denote by V �
0VV and V �

1VV the eigenspaces in R2�

corresponding to the eigenvalue 0 and

2�, respectively, of G� (or, equivalently, to 0 and 1 as eigenvalues of E�). Then

R2�

= V �
0VV ⊕ V �

1VV and as V �
0VV = Ker (G�) and V �

1VV = Im (G�), we find that dim V �
0VV =

2�−�−1 and dim V �
1VV = �+1. An explicit orthogonal basis for V �

1VV may be constructed

as follows. Let v0
0 = 1 and let us assume that we already inductively found a set{

v�−1
0 , . . . , v�−1

�−1

} ⊆ R2�−1
. We then construct a new set

{
v�

0, . . . , v
�
�−1, v

�
�

} ⊆ R2�

by

putting

v�
k =

(
v�−1

k

v�−1
k

)
, for 0 ≤ k < �

and

v�
� =

(
u�−1

−u�−1

)
, where u�−1 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ R2�−1

.

As an example, if � = 1, we find

v1
0 =

(
1

1

)
, v1

1 =

(
1

−1

)

and, if � = 2, we find

v2
0 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

1

1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ , v2
1 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

−1

1

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ , v2
2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

1

−1

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

As we will see later in chapter IV, these vectors v�
k are exactly the i-th columns of

the Walsh matrix V � for i = 0 and i = 2j with 0 ≤ j < �.

Let us now prove:

Proposition II.8. With the previous notations, for any positive integer �, the set{
v�

0, . . . , v
�
�

}
is an orthogonal basis for V �

1VV .

Proof. For � = 0, the statement is obvious. So, let us assume it to hold true for

length 0, . . . , � − 1 and let us prove it for length �. In this case, if 0 ≤ k �=�� k′ < �,
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we have

tv�
kv

�
k′ =

(
tv�−1

k
tv�−1

k

)(v�−1
k′

v�−1
k′

)
= 2tv�−1

k v�−1
k′ = 0

and

tv�
kv

�
� =

(
tv�−1

k
tv�−1

k

)( u�−1

−u�−1

)
= tv�−1

k u�−1 − tv�−1
k u�−1 = 0.

In particular, the set
{
v�

0, . . . , , v
�
�

}
is clearly independent. In order to conclude, it

thus remains to prove that all of the v�
k belong to V �

1VV . We again argue by induction.

If k < �, then

G�v
�
k =

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)(
v�−1

k

v�−1
k

)

= 2

(
G�−1v

�−1
k

G�−1v
�−1
k

)
= 2�

(
v�−1

k

v�−1
k

)
= 2�v�

k.

On the other hand, we also have

G�v
�
� =

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)(
u�−1

−u�−1

)

= 2

(
U �−1u�−1

−U �−1u�−1

)
= 2�

(
u�−1

−u�−1

)
= 2�v�

�.

This proves the assertion.

It is clear that ε∗(f) = 0 and ε∗(f) = 1 if and only if f ∈ V �
1VV and f ∈ V �

0VV ,

respectively.

For example, if � = 2, then f ∈ V 2
1VV if and only if

f ∈
〈⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

−1

1

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

1

−1

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
〉

,
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so ⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
f(00)

f(01)

f(10)

f(11)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ = α

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

1

1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+ β

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

−1

1

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+ γ

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

1

−1

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
or

f(00) = α + β + γ

f(01) = α − β + γ

f(10) = α + β − γ

f(11) = α − β − γ

and this yields

f(00) + f(11) = f(01) + f(10).

The converse is true as well. Indeed, assume that f(00) + f(11) = f(01) + f(10).

We just saw that

f ∈
〈⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

−1

1

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

1

−1

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
〉

if and only if we may find α, β, γ ∈ R with

f(00) = α + β + γ

f(01) = α − β + γ

f(10) = α + β − γ

f(11) = α − β − γ.

However, our assumption clearly implies the values

α =
f(00) + f(11)

2
, β =

f(00) − f(01)

2
, γ =

f(00) − f(10)

2

to do the trick.

4 Examples

Let us calculate the normalized epistasis of some typical (but rather extreme) func-

tions using the techniques developed in the previous section.
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For arbitrary �, let cons be the constant function with norm ||cons|| = 1, i.e.,

cons = 2−
�
2 u�, where

u� =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ R2�

.

Taking into account lemma II.2, it follows easily that

tu�G�u� =
2�−1∑
i,j=0

gij = 22�

and

ε∗(cons) = ε∗(u�) = 1 − 2−� tu�G�u�

2�
= 0.

Let us now consider the vectors

e� =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

0
...

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ , e′
� =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0

0
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
in R2�

and let us denote by 0� ∈ R2�

the vector all of whose entries are 0.

The needle-in-a-haystack function needle (see section 5.2 of chapter I) centered at

t = 0 is given by needle(s) = δs,0, where δ denotes the “Kronecker delta”, i.e.,

needle(s) = 1 if s = 0 and needle(s) = 0 elsewhere. So, the associated vector of

needle is e� and

te�G�e� = (te�−1
t0�−1)

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)(
e�−1

0�−1

)
= te�−1G�−1e�−1 + te�−1U �−1e�−1 = te�−1G�−1e�−1 + 1

= te�−2G�−2e�−2 + 2 = · · · = te1G1e1 + � − 1 = � + 1.

Then, the normalized epistasis of needle is

ε∗(needle) = 1 − � + 1

2�
.
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Finally, consider the so-called camel function camel (also defined in section 5.2,

chapter I) with camel(0) = camel(2� − 1) = 1 and camel(s) = 0 for s �= 0�� , 2� − 1.

The associated vector is c� = e� + e′
� and

tc�G�c� = (te� + te′
�)G�(e� + e′

�)

= te�G�e� + 2 te�G�e
′
� + te′

�G�e
′
�.

The verification of te′
�G�e

′
� = �+1 is analogous to the calculation of te�G�e�. Using

this, it follows that

te�G�e
′
� = (te�−1,

t0�−1)

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)(
0�−1

e′
�−1

)
= te�−1G�−1e

′
�−1 − te�−1U �−1e

′
�−1 = te�−1G�−1e

′
�−1 − 1

= te�−2G�−2e
′
�−2 − 2 = · · · = te1G1e

′
1 − (� − 1) = 1 − �.

Finally, we have
tc�G�c� = 2(� + 1) + 2(1 − �) = 4, (II.2)

hence the normalized epistasis of camel is given by

ε∗(camel) = 1 − 4

2� ‖ c� ‖2
= 1 − 4

2�2
= 1 − 1

2�−1
.

5 Extreme values

We have already seen that the normalized epistasis value ε∗ takes values between

0 and 1. However, in most practical situations, one considers functions which only

take positive values. For these functions, we will calculate the extreme values of

the normalized epistasis. Let us also point out that maximal and minimal values

of ε∗(f) correspond to minimal and maximal values of γ(f) = tfG�f , respectively,

with ‖f‖ = 1, where, of course, 0 ≤ γ(f) ≤ 2�.

5.1 The minimal value of normalized epistasis

First, observe that the theoretical minimal value ε∗(f) = 0 or, equivalently, the

maximal value γ(f) = 2�, may indeed be reached.
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If � = 1, then dim V 1
1VV = � + 1 = 2, so V 1

1VV = R2 and for any f ∈ R2 with ‖f‖ = 1,

we find

γ(f) = tfG1f =
(

f0ff f1ff
)(2 0

0 2

)(
f0ff

f1

)
= 2

(
f 2

0ff + f 2
1

)
= 2.

If � > 1 and f = 2−
�
2 u�, then ‖f‖ = 1, and using lemma II.2 it easily follows that

γ(f) = tfG�f =
2�−1∑
i,j=0

gijfiff fjf = 2−�
2�−1∑
i,j=0

gij = 2�.

We will now show that ε∗ (f) = 0 occurs exactly when f has minimal epistasis in

the sense of Rawlins, i.e., when f is a first order function:

f (s) =

�−1∑
i=0

gi(si) for any s = s�−1 . . . s0.

Note also that gi(si) is often written as gi(s), with the implicit assumption that gi

only depends on the value of s at position i.)

This condition is easily seen to be equivalent to the existence of a vector g ∈ R2�

such that A�g = f , where A� = (aij) ∈ R2� ×R2� is defined as follows: if we encode

a 0 as 01 and a 1 as 10, then the i-th row of A� will be the encoded version of the

number i − 1 in binary notation.

For example, if � = 2, then

A2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Alternatively, A� may be defined by

aij =

{
1 − (((i − 1) div�

2�−j+1
2

�−1 2) mod 2) if j is even

(((i − 1) div�
2�−j+1

2
�−1 2) mod 2) if j is odd.

Here, for any x ∈ R, we let �x� denote the smallest integer n with n ≥ x and div

denotes integer division. Moreover divk is inductively defined by⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
n div0 m = n

n div1 m = n divm

n divk m = (n divk−1 m) divm.
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Taking into account proposition B.9, we know that a linear system f = A�g has

A
†
�f as a solution, whenever solutions exist. (The matrix A

†
� is called the generalized

inverse of A�.) So, it is clear that the existence of g such that A�g = f is equivalent

to

f − A�A
†
�f = 0.

We will see below that E� = A�A
†
� and from this one easily deduces the following

result:

Theorem II.9. The following statements are equivalent:

1. f = E�f ,

2. f is a first order function.

To prove this theorem, we first show that the ranges of A� and E� are identical:

Lemma II.10. Im(A�) = Im(E�).

Proof. If we denote by a�
1, a

�
2, . . . , a

�
2� the columns of A� and by g�

0, g
�
1, . . . , g

�
2�−1

the

columns of G�, we have to prove that

< a�
1, a

�
2, . . . , a

�
2� > = < g�

0, g
�
1, . . . , g

�
2�−1 > .

For � = 1, this is clear, since

< a1
1, a

1
2 > = < (0, 1), (1, 0) > = < (2, 0), (0, 2) > = < g1

0, g
1
1 > .

Let us now argue by induction, i.e., suppose that

< a�−1
1 , a�−1

2 , . . . , a�−1
2�−2 > = < g�−1

0 , g�−1
1 , . . . , g�−1

2�−1−1
>

and let us prove the analogous result in the length � case. First of all, note that

applying elementary column operations to

G� =

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)
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easily yields that

Im(G�) = Im(G′
�) = Im(G′′

� ),

where

G′
� =

(
G�−1 G�−1 − U �−1

G�−1 G�−1 + U �−1

)
and

G′′
� =

(
G�−1 −U �−1

G�−1 U �−1

)
.

On the other hand, note that

A� =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0
...

0

1
...

1

a�−1
1 · · · a�−1

2�−2

1
...

1

0
...

0

a�−1
1 · · · a�−1

2�−2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
and

G′′
� =

(
g�−1

0 · · · g�−1
2�−1−1

−U �−1

g�−1
0 · · · g�−1

2�−1−1
U �−1

)
.

If we take i = 2�−1, . . . , 2� − 1, the corresponding column of G′′
� is of the form⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

−1
...

−1

1
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0
...

0

1
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
−

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1
...

1

0
...

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

Now, the i-th column of G′′
� , with 0 ≤ i < 2�−1, is of the form(

g�−1
i

g�−1
i

)
.
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But g�−1
i ∈ < a�−1

1 , . . . , a�−1
2�−2 >, so(

g�−1
i

g�−1
i

)
∈ < a�

3, . . . , a
�
2� > .

Similarly each of the 2� − 2 last columns of A� is a linear combination of the first

2�−1 − 1 columns of G′′
� .

Moreover, we know that u�−1 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ is a linear combination of the columns of G′′
�

as ⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =
1

2

(
g�−1

j + g�−1
2�−1−1−j

)

for 0 ≤ j < 2�−1.

Finally, we have that ⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0
...

0

1
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
=

1

2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1
...

1

1
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
+

1

2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

−1
...

−1

1
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

and also ⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1
...

1

0
...

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1
...

1

1
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
−

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0
...

0

1
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

Proposition II.11. E� = A�A
†
�.
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Proof. We know that A�A
†
� is the orthogonal projection on the range Im(A�) and

also that a linear map is an orthogonal projection if, and only if, its corresponding

matrix is idempotent and symmetric (proposition B.28). Taking into account this

and the previous result, we conclude that E� = A�A
†
�, because E� is idempotent

and symmetric and the orthogonal projection on a subspace is unique.

An easier proof of theorem II.9 may be given as follows. For any 0 ≤ i < � define

h�
i : Ω → R by putting h�

i (s) = 1 if si = 1 and h�
i (s) = 0 elsewhere and denote by

h�
i the corresponding vector in R2�

. It is clear that for any 0 ≤ i < � − 1, we have

h�
i =

(
h�−1

i

h�−1
i

)
,

while

h�
�−1 =

(
0�−1

u�−1

)
with 0i =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
0
...

0

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ R2i

,

for any i ≥ 0.

So, a straightforward induction argument shows that the vectors h�
0, . . . , h�

�−1, u�

belong to V �
1VV . It is also easy to see that they are linearly independent. Indeed, if∑

αih
�
i + βu� = 0, then, with g =

∑
αih

�
i + βu�, we find g (2i) = αi + β = 0 for

0 ≤ i < � and g (0) = β = 0, hence α0 = · · · = α�−1 = β = 0.

If gi : Ω → R only depends on the i-th bit, i.e., gi (s) = ai if si = 1 and gi (s) = bi if

si = 0, say, then we may write gi as aih
�
i + bi

(
u� − h�

i

)
.

So, if f is a first order function, then

f ∈ 〈
h�

0, . . . , h
�
�−1, u�

〉
= V �

1VV ,

i.e., ε∗ (f) = 0.

Conversely, if f ∈ V �
1VV , then

f =
∑

αih
�
i + βu� =

∑
gi,

where

g0 = (α0 + β)h�
0 + β

(
u� − h�

0

)
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and

gi = αih
�
i for 1 ≤ i < �.

Example II.12. As an example, let us show that “linear” functions

f : Ω → R : s �→�� bs + a,

with a, b ∈ R, have zero epistasis. For each 0 ≤ i < �, define the function gi on

{0, 1} by

gi(t) = 2ibt +
a

�
.

Then, it is clear that

f(s) = b

�−1∑
i=0

2isi + a =

�−1∑
i=0

(bsi2
i +

a

�
) =

�−1∑
i=0

gi(si).

5.2 The maximal value of normalized epistasis

Let us now take a look at the maximal value of ε∗(f). We have already mentioned

that ε∗(f) ≤ 1. However, if we restrict to positive-valued functions, we claim that

the maximal value of ε∗ (f) is 1 − 1
2�−1 . Note that we may, of course, assume that

||f || = 1, and prove that the minimal value of γ (f) is 2.

Let us first point out that γ (f) = 2 may effectively be reached, by choosing

f =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
α

0
...

0

α

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

where α =
√

2
2

. This is clear since f = αcamel , where camel is the camel function

defined in section 4. So, if we take into account calculation (II.2) in the same section,

it follows that

γ(f) = α(tc�G�c�)α = 4α2 = 2.
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Proposition II.13. For any positive integer � and any positive valued function

f : Ω → R, we have

ε∗ (f) ≤ 1 − 1

2�−1
.

Proof. Again we assume that ||f || = 1, and show that γ(f) ≥ 2. Since G� is

symmetric, there exists some orthogonal matrix S such that tSG�S = D is a

diagonal matrix (corollary B.40), whose diagonal entries are the eigenvalues of G�

(taking into account multiplicities), i.e.,

D =

(
2�I�+1 0

0 0

)
∈ M2MM � (Z) .

Let g = tSf , then we thus find that

γ(f) = 2�
(
g2
0 + · · · + g2

�

)
.

The matrix S may be constructed by choosing its columns to be an orthogonal basis

consisting of normalized eigenvectors of G�. In particular, its first � + 1 columns

may be chosen to be the columns 2− �
2 v�

i (i = 0, . . . , �), as ‖v�
i‖ = 2

�
2 for all i.

Now, we have that

γ(f0ff , . . . , f2ff �−1) = γ(f) =
�∑

i=0

(
tv�

if
)2

.

By construction (we temporarily add subscripts to γ to stress the dimension of its

argument),

γ�γγ (f0ff , . . . , f2ff �−1)= γ�γγ −1(f0ff + f2ff �−1 , . . . , f2ff �−1−1 + f2ff �−1)

+ ((f0ff + f1 + · · · + f2ff �−1−1) − (f2ff �−1 + · · · + f2ff �−1))
2 .

Let us write

f̂ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f0ff + f2ff �−1

...

f2ff �−1−1 + f2ff �−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ R2�−1

.
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Then

‖f̂‖2 = (f0ff + f2ff �−1)2 + · · · + (f2ff �−1−1 + f2ff �−1)
2

= f 2
0ff + · · · + f 2

2ff �−1 + 2 (f0ff f2ff �−1 + · · · + f2ff �−1−1f2ff �−1)

= 1 + 2 (f0ff f2ff �−1 + · · · + f2ff �−1−1f2ff �−1)

= a2,

for some positive real a ≥ 1.

Put f ′ = 1
a
f̂ , then ‖f ′‖ = 1 and

γ�γγ −1(f
′) = γ�γγ −1(

1

a
f̂) =

1

a2
γ�γγ −1(f̂).

Note that since f only takes positive values, so does f ′. Now, let us assume for some

positive integer � that γ�γγ (f) < 2, for a positive f : Ω → R with ‖f‖ = 1. Then

γ�γγ −1(f̂)≤ γ�γγ −1(f̂) + ((f0ff + f1 + · · · + f2ff �−1−1) − (f2ff �−1 + · · · + f2ff �−1))
2

= γ�γγ (f) < 2.

In particular,

γ�γγ −1(f
′) =

1

a2
γ�γγ −1(f̂) <

2

a2
≤ 2

as well. But then, iterating this procedure, we find some positive f : {0, 1} → R

with ‖f‖ = 1, such that γ1(f) < 2. This is impossible, however, as

γ1(f) = 2.

This contradiction proves the assertion.

We already pointed out above that the minimal value γ(f) = 2 may actually be

reached for every �. On the other hand, the example we gave is essentially the only

one. Note, of course, that if � = 1 and ‖f‖ = 1, then we always have γ (f) = 2.

So, for � > 1, define for any 0 ≤ i < 2�−1 the vector q�
i ∈ R2�

by
(
q�

i

)
i
=
(
q�

i

)
ı̄
=

√
2

2
,

and
(
q�

i

)
j
= 0 if j �=�� i, ı̄ (where ¯ denotes the binary complement of i).

Then:
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Proposition II.14. With notations as before, the following statements are equival-

ent for any � ≥ 2 and any positive f ∈ R2�

with ‖f‖ = 1:

1. ε∗ (f) = 1 − 1

2�−1
;

2. there exists some 0 ≤ i < 2�−1 with f = q�
i.

Proof. Let us first verify the statement for � = 2. If γ(f0ff , f1, f2ff , f3ff ) = 2 (with

‖f‖ = 1), then γ(f0ff + f2ff , f1 + f3ff ) + ((f0ff + f1) − (f2ff + f3ff ))2 = 2. So, with notations

as in the previous result,

2a2 = a2γ(f ′) = γ(f̂) ≤ 2,

hence, as a ≥ 1, it follows that a = 1, so

f0ff f2ff + f1f3ff = 0 (∗)

and γ(f̂) = 2, hence

f0ff + f1 = f2ff + f3ff . (∗∗)
Of course, (∗) is equivalent to f0ff f2ff = f1f3ff = 0, as f is positive. If f0ff = 0, then we

cannot have f1 = 0, as otherwise f2ff = f3ff = 0, by (∗∗), so f3ff = 0 and f = q2
1. If

f0ff �= 0, then�� f2ff = 0 and f = q2
0.

Let us now argue by induction, i.e., suppose the statement holds up to length �− 1,

and let us see what happens for length �.

If γ�γγ (f) = 2, then, as γ�γγ −1(f̂) ≤ 2, we again find γ�γγ −1(f̂) = 2, and

f0ff + · · · + f2ff �−1−1 = f2ff �−1 + · · · + f2ff �−1.

From

2 ≤ γ�γγ −1(f
′) =

1

a2
γ�γγ −1(f̂) =

2

a2

and a ≥ 1, it follows that ‖f̂‖ = 1 and

f0ff f2ff �−1 + · · · + f2ff �−1−1f2ff �−1 = 0,

i.e.,

f0ff f2ff �−1 = · · · = f2ff �−1−1f2ff �−1 = 0.
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By induction f̂ = f ′ = g�−1
i for some 0 ≤ i ≤ 2�−2 − 1, i.e.,

fiff + f2ff �−1+i = f2ff �−1−i + f2ff �−i =

√
2

2

and other entries vanish. Since fiff f2ff �−1+i = f2ff �−1−if2ff �−i = 0, the same argument as

above applies, showing that f = q�
i or f = g�

2�−1−i
, indeed.
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Chapter III

Examples

This chapter is devoted to the explicit calculation of epistasis values for three classes

of functions: generalized Royal Road functions, unitation functions, and template

functions. Unlike the calculations in chapter IV, where we will work in the Walsh

basis, the calculations in this chapter are direct, i.e., fG�f is directly computed for

the respective functions.

The Royal Road functions are of historical importance with regard to GA dynamics.

They were one of the first “laboratory functions” especially designed to study the

dynamics of GAs. Given the strong linkage between the bits in these functions,

it seems justified to compute their epistasis and relate it to the problem difficulty

they impose on a GA. We show in the first section of this chapter that within the

parametrized class of generalized Royal Road functions, this problem difficulty is

indeed directly related to the epistasis values.

The motivation for computing the epistasis of unitation functions is that these func-

tions occur very frequently in GA theory because of their simple yet in some way

flexible fitness assignment scheme. Moreover, they occur in GA problem difficulty

research in the context of deception.

Template functions are a variation on the theme of the Royal Road functions. Their

controlling parameter defines the length of the “template” whose presence in a chain

yields its fitness value (see below for a precise definition). From their very definition,

it seems obvious that the epistasis should increase when the template length does,



and that this implies the function to be harder to optimize. The aim of the third

section of this chapter is to show that this is indeed the case.

1 Royal Road functions

1.1 Generalized Royal Road functions of type I

Mimicking the constructions in [60] detailed in section 5.4 of chapter I, we introduce,

for any pair of positive integers m ≤ n, generalized Royal Road functions Rn
m of Type

I through the schemata

Hn,m
iHH = #(2mi)1(2m)#2n−2m(i+1),

where 0 ≤ i < 2n−m. The value of Rn
m applied to a length � = 2n string s is given

by

Rn
m(s) =

∑
s∈Hn,m

i

ci,

where, for any 0 ≤ i < 2n−m, we put ci = 2m. Obviously, R6
3 is Forrest and Mitchell’s

original Royal Road function R1.

In order to calculate the normalized epistasis of the functions Rn
m, one first calculates

γ(Rn
m) = tRn

mG2nRn
m,

where, as before, Rn
m ∈ R22n

denotes the vector corresponding to Rn
m, i.e.,

Rn
m =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
Rn

m(00 . . . 0)
...

Rn
m(11 . . . 1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

To simplify the actual calculation, let us note that

Rn
m = 2m

∑
0≤i<2n−m

h
n,m
i ,

where, for any 0 ≤ i < 2n−m, we denote by h
n,m
i the vector corresponding to the

characteristic function hn,m
i of Hm,n

iH , defined by

hn,m
i (s) =

⎧⎨⎧⎧⎩⎨⎨1 s ∈ Hn,m
iH

0 s �∈�� Hn,m
iH .
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1 Royal Road functions

For example, if n = m, then

h
n,n
0 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0

0
...

0

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

For each r ∈ Rp, let ξq(r) denote the vector

t
(

r r · · · r

)
∈ Rpq.

If n = m + 1 we find, for 0 ≤ i < 2n−m−1 (i.e., i = 0), that

h
n,n−1
i =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
ξ22n−1 (0)

ξ22n−1 (0)
...

ξ22n−1 (0)

ξ22n−1 (1)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
and for 2n−m−1 ≤ i < 2n−m (i.e. i = 1), that

h
n,n−1
i = ξ22n−1 (

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0

0
...

0

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
).

In general, these vectors h
n,m
i may easily be constructed by induction, since we have,

for 0 ≤ i < 2n−m−1, that

h
n,m
i =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
ξ22n−1 (hn−1,m

i (0))

ξ22n−1 (hn−1,m
i (1))
...

ξ22n−1 (hn−1,m
i (22n−1 − 1))

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
and, for 2n−m−1 ≤ i < 2n−m, that

h
n,m
i = ξ22n−1 (hn−1,m

i−2n−m−1).
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In order to better describe the structure of G2n and its interaction with the two

different constructions of h
n,m
i , define τ , a permutation on the rows of a column

vector, by

τ(hn,m
k ) = h

n,m
k+2n−m−1 ,

for all 0 ≤ k < 2n−m−1. Clearly, τ = τ−1, and we obtain

h
n,m
k G2nh

n,m
k = τ(hn,m

k )G′
2nτ(hn,m

k ),

where G′
2n ∈ M2MM 2n−1 (Z) is the result of applying τ both to the columns and rows of

G2n . If we denote by ⊕ the “exclusive or” operation, we may decompose G′
2n as

G′
2n =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
L0,0⊕0

n L0,0⊕1
n · · · L0,0⊕22n−1−1

n

L1,1⊕0
n L1,1⊕1

n · · · L1,1⊕22n−1−1
n

...
...

. . .
...

L22n−1−1,22n−1−1⊕0
n L22n−1−1,22n−1−1⊕1

n · · · L22n−1−1,22n−1−1⊕22n−1−1
n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

for some Lα,β
n ∈ M2MM 2n−1 (Z). Within G2n , each matrix Lα,β

n is dispersed by τ . Its

elements are situated in a grid with top left element at row α and column α ⊕ β,

and inter-element distance 22n−1 − 1, as in

a b a b

c d c d

a b a b

c d c d

for example. It is now clear that

Lα,β
n =

(
gα+i22n−1 , (α⊕β)+j22n−1

)
0≤i, j<22n−1

provides an alternative definition of Lα,β
n . The following result shows the strong

relationship between this matrix and G2n :

Lemma III.1. For all 0 ≤ α, β < 22n−1
, we have

Lα,β
n = G2n−1 + (2n−1 − 2d0β)U 2n−1 .
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Proof. The result follows from a short calculation (where we annotate g’s to indicate

the matrix they belong to):(
Lα,β

n

)
ij

= g
(n)

α+i22n−1 , (α⊕β)+j22n−1

= 2n + 1 − 2dα+i22n−1 , (α⊕β)+j22n−1

= 2n + 1 − 2d22n−1 i, 22n−1 j − 2dα⊕β, α

= 2n−1 + 1 − 2dij + 2n−1 − 2d0β

= g
(n−1)
ij + 2n−1 − 2d0β .

So,

Lα,β
n = G2n−1 + (2n−1 − 2d0β)U 2n−1 .

The calculation of γ(Rn
m) also depends on the following two lemmas:

Lemma III.2. For all 0 ≤ k < 2n−m, we have

th
n,m
k G2nh

n,m
k = (2m + 1)

n∏
i=m+1

22i

.

Proof. First note that the statement is obvious for n = m. Indeed, in this case,

th
n,n
0 G2nh

n,n
0 = g2n−1, 2n−1 = 2n + 1.

Let us prove the general case by induction on n. So, pick m < n and 0 ≤ k <

2n−m, and let us first assume that 2n−m−1 ≤ k < 2n−m. In this case, h
n,m
k =

ξ22n−1 (hn−1,m
k−2n−m−1). Note that

th
n,m
k ((G2n−2n−1 − U 2n−2n−1) ⊗ U 2n−1)h

n,m
k

=
∑

0≤p<22n−1

∑
0≤q<22n−1

(
(gpqg − 1)th

n−1,m
k−2n−m−1U 2n−1h

n−1,m
k−2n−m−1

)
(III.1)

= 0.

The last equality easily follows from the fact that for any 0 ≤ q < 22n−1
, the binary

complement ¯ of q has the property that

(gpqg − 1) + (gpg q̄ − 1) = 2.22n−1 − 2(dpq + dpq̄) = 0,
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whence
∑

q(gpqg − 1) = 0. Moreover,

th
n,m
k G2nh

n,m
k = th

n,m
k (U 2n−2n−1 ⊗ G2n−1 + (G2n−2n−1 − U 2n−2n−1) ⊗ U 2n−1) h

n,m
k

= th
n,m
k (U 2n−2n−1 ⊗ G2n−1)h

n,m
k

= 22n−1

22n−1 th
n−1,m
k−2n−m−1G2n−1h

n−1,m
k−2n−m−1

= 22n th
n−1,m
k−2n−m−1G2n−1h

n−1,m
k−2n−m−1 .

Next, if we assume that 0 ≤ k < 2n−m−1, then it follows that

th
n,m
k G2nh

n,m
k = th

n,m
k+2n−m−1G

′
2nh

n,m
k+2n−m−1

=
∑

0≤α<22n−1

∑
0≤β<22n−1

th
n−1,m
k Lα,β

n h
n−1,m
k (III.2)

=
∑

0≤α<22n−1

∑
0≤β<22n−1

th
n−1,m
k

(
G2n−1 + (2n−1 − 2d0β)U 2n−1

)
h

n−1,m
k

= 22n−1

22n−1 th
n−1,m
k G2n−1h

n−1,m
k

+ 22n−1
∑

0≤β<22n−1

th
n−1,m
k U 2n−1(2n−1 − 2d0β)hn−1,m

k

= 22n th
n−1,m
k G2n−1h

n−1,m
k ,

since ∑
0≤β<22n−1

(2n−1 − 2d0β) =
∑

0≤β<22n−1−1

(2n−1 − 2d0β + 2n−1 − 2d0β̄)

=
∑

0≤β<22n−1−1

(2n − 2(d0β + d0β̄))

=
∑

0≤β<22n−1−1

(2n − 2.2n−1) = 0.

A straightforward induction argument proves the assertion.

We will also need:

Lemma III.3. For all m < n and 0 ≤ k �=�� � < 2n−m, we have

th
n,m
k G2nh

n,m
� =

n∏
i=m+1

22i

.
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Proof. Let us begin with the case m = n−1 and define the vectors e′ and u in R22m

as in section 4 of chapter II:

e′ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0
...

0

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ =

(
ξ22m−1(0)

1

)
, u =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

1
...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ = ξ22m (1).

Clearly,

h
n,m
0 =

(
ξ22n−22m (0)

u

)
, h

n,m
1 = ξ22m (e′).

Arguing as in the previous lemma, we have that

th
n,m
0 G2m+1h

n,m
1 = th

n,m
0 (U 2m ⊗ G2m + (G2m − U 2m) ⊗ U 2m) h

n,m
1

= th
n,m
0 (U 2m ⊗ G2m)h

n,m
1 (by (III.1))

= 22m th
n,m
0 ξ22n−2m (G2me′) = 22m tuG2me′

= 22m
∑

0≤j<22m

gij = 22m

+ 22m

= 22m+1

.

Arguing inductively, exactly as in the proof of the previous lemma, we find

• if 2n−m−1 ≤ k �=�� � < 2n−m,

th
n,m
k G2nh

n,m
� = 22n th

n−1,m
k−2n−m−1G2n−1h

n−1,m
�−2n−m−1 ,

• if 0 ≤ k �=�� � < 2n−m−1,

th
n,m
k G2nh

n,m
� = 22n th

n−1,m
k G2n−1h

n−1,m
� .

Finally, if we assume that 0 ≤ k < 2n−m−1 ≤ � < 2n−m then hn
i can be written as

hn
i =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
un

i0
...

un
i(22n−1−1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,

where

un
pq = ξ22n−1 (hn−1,m

p (q)).
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To conclude, note that

th
n,m
k G2nh

n,m
� = th

n,m
k (U 2n−1 ⊗ G2n−1 + (G2n−1 − U 2n−1) ⊗ U 2n−1) h

n,m
�

= 22n−1 th
n,m
k ξ22n−1 (G2n−1h

n−1,m
�−2n−m−1)

= 22n−1
∑

0≤q<22n−1

un
kqG2n−1h

n−1,m
�−2n−m−1

= 22n−1

.
∣∣∣∣∣∣∣{0 ≤ q ≤ 22n−1 − 1; un

pq = ξ22n−1 (1)
}∣∣∣∣∣∣∣ tξ22n−1 (1)hn−1,m

�−2n−m−1

= 22n

.22n−1−2m

.22n−1−2m

=

n∏
i=m+1

22i

.

A straightforward induction argument finishes the proof.

Finally, we obtain:

Proposition III.4. For any pair of positive integers m ≤ n, we have

γ(Rn
m) = 2n+m(2m + 2n−m)

n∏
i=m+1

22i

.

Proof. It follows from the previous results that

γ(Rn
m) = tRn

mG2nRn
m

= 22m

( ∑
0≤i<2n−m

th
n,m
i

)
G2n

( ∑
0≤i<2n−m

h
n,m
i

)
= 22m

∑
0≤i<2n−m

th
n,m
i G2nh

n,m
i + 22m

∑
0≤i	=		 j<2n−m

th
n,m
i G2nh

n,m
j

= 2n+m(2m + 1)
n∏

i=m+1

22i

+ 2n+m(2n−m − 1)
n∏

i=m+1

22i

= 2n+m(2m + 2n−m)

n∏
i=m+1

22i

.

It remains to calculate the norm of the generalized Royal Road Functions. This will

be realized through the following straightforward lemmas.
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Lemma III.5. For all 0 ≤ k < 2n−m, we have

th
n,m
k h

n,m
k =

n∏
i=m+1

22i−1

=

n−1∏
i=m

22i

.

Proof. Let us begin with the case n = m. Then k = 0 and

th
n,n
0 h

n,n
0 = 1.

If n = m + 1, we have k = 0 or k = 1, so

th
n,n−1
0 h

n,n−1
0 = tξ22n−1 (1)ξ22n−1 (1) = 22n−1

and
th

n,n−1
1 h

n,n−1
1 = tξ22n−1 (e′)ξ22n−1 (e′) = 22n−1

.

In the general case, we proceed by induction. Indeed, if 0 ≤ k < 2n−m−1, then

h
n,m
k =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
ξ22n−1 (hn−1,m

k (0))

ξ22n−1 (hn−1,m
k (1))
...

ξ22n−1 (hn−1,m
k (22n−1 − 1))

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
so,

th
n,m
k h

n,m
k = 22n−1 th

n−1,m
k h

n−1,m
k .

Similarly, if 2n−m−1 ≤ k < 2n−m, then h
n,m
k = ξ22n−1 (hn−1,m

k−2n−m−1), hence

th
n,m
k h

n,m
k = 22n−1 th

n−1,m
k−2n−m−1h

n−1,m
k−2n−m−1 .

In both cases, we find by induction that th
n,m
k h

n,m
k =

∏n
i=m+1 22i−1

.

Lemma III.6. For all n ≥ 0 and 0 ≤ k �=�� � < 2n−m, we have

th
n,m
k h

n,m
� =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
1 if m = n − 1

n∏
i=m+2

22i−1

if m < n − 1.

Proof. For m = n − 1, the statement is obvious. For arbitrary m ≤ n, we argue by

induction. We consider three cases:
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• If 2n−m−1 ≤ k �=�� � < 2n−m, then

th
n,m
k h

n,m
� = 22n−1 th

n−1,m
k−2n−m−1h

n−1,m
�−2n−m−1 .

• If 0 ≤ k �=�� � < 2n−m−1, then

th
n,m
k h

n,m
� = 22n−1 th

n−1,m
k h

n−1,m
� .

• Finally, if 0 ≤ k < 2n−m−1 ≤ � < 2n−m, then the number of 1’s in the vector

h
n,m
i is

∏n
j=m+1 22j−1

. It follows that

th
n,m
k h

n,m
� =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
ξ22n−1 (hn−1,m

k (0))

ξ22n−1 (hn−1,m
k (1))
...

ξ22n−1 (hn−1,m
k (22n−1 − 1))

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ξ22n−1 (hn−1,m
�−2n−m−1)

=
∣∣∣∣∣∣∣{0 ≤ i < 22n−1

; hn−1,m
k (i) = 1

}∣∣∣∣∣∣∣ (1, . . . , 1)h
n−1,m
�−2n−m−1

=
n−1∏

i=m+1

22i−1
∣∣∣∣∣∣∣{0 ≤ i < 22n−1

; hn−1,m
k (i) = 1

}∣∣∣∣∣∣∣
=

(
n−1∏

i=m+1

22i−1

)
th

n−1,m
k h

n−1,m
k =

n−1∏
i=m+2

22i−1

.

An easy induction argument completes the proof.

Proposition III.7. The norm of the Royal Road function Rn
m is

‖Rn
m‖2 = 2n+m(22m

+ 2n−m − 1)

n∏
i=m+2

22i−1

.

Proof. This easily follows from

tRn
mRn

m = 22m

( ∑
0≤i<2n−m

th
n,m
i

)( ∑
0≤i<2n−m

h
n,m
i

)
= 22m

∑
0≤i<2n−m

th
n,m
i h

n,m
i + 22m

∑
0≤i	=		 j<2n−m

th
n,m
i h

n,m
j

= 2n+m

n∏
i=m+1

22i−1

+ (2n−m − 1)2n+m

n∏
i=m+2

22i−1

= 2n+m(22m

+ 2n−m − 1)
n∏

i=m+2

22i−1

.
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Theorem III.8. The epistasis of the Royal Road function Rn
m is given by

ε∗(Rn
m) =

22m − 2m − 1

22m + 2n−m − 1
.

Proof. The epistasis of the Rn
m Royal Road function is

ε∗(Rn
m) = 1 − γ(Rm

n )

22n‖Rm
n ‖2

= 1 − 2n+m(2m + 2n−m)
∏n

i=m+1 22i

22n2n+m(22m + 2n−m − 1)
∏n

i=m+2 22i−1

=
22m − 2m − 1

22m + 2n−m − 1
.

Applying this formula to the “classical” Royal Road function R1 = R6
3 gives a high

epistatic value of

ε∗(R1) =
223 − 23 − 1

223 + 23 − 1
=

256 − 8 − 1

263
= 0.93916.

For general values of n, the minimal and maximal epistatic values are given by

ε∗(Rn
0 ) =

220 − 20 − 1

220 + 20 − 1
= 0

and

ε∗(Rn
n) =

22n − 2n − 1

22n + 20 − 1
= 1 − 2n + 1

22n ≈ 1 − 1

22n−n
,

which is close to the maximal possible value 1 − 1
22n−1 of normalized epistasis over

length 2n strings.

1.2 Generalized Royal Road functions of type II

Inspired in the constructions of [60], we also introduce generalized Royal Road func-

tions of type II, as follows. For any subsetII T ⊆ {1, . . . , n}, define Rn
T by

Rn
T (s) =

∑
s∈Hn,m

i
m∈T

cm,n
i ,
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where cm,n
i = 2m, for any 0 ≤ i < 2n−m.

The associated vector Rn
T can be written as a sum of vectors h

n,m
i :

Rn
T =

∑
m∈T

⎛⎝⎛⎛2m
∑

0≤i<2n−m

h
n,m
i

⎞⎠⎞⎞ .

Lemma III.9. For all positive integers n = p > q ≥ 0 and any 0 ≤ b < 2n−q, we

have

th
n,n
0 G2nh

n, q
b = (2q + 1)

n∏
i=q+1

22i−1

= (2q + 1)22n−2q

.

Proof. We prove this result by induction on n. Let us begin with n = q + 1, then

th
n,n
0 G2nh

n, q
0 = th

n,n
0 [U 2n−1 ⊗ G2n−1 + (G2n−1 − U 2n−1) ⊗ U 2n−1 ]hn, q

0

= (0, . . . , 0, 1)G2n−1

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ + 22n−1
(0, . . . , 0, 1)U 2n−1

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
= 22q

+ 22q

2q

= 22q

(2q + 1)

and

th
n,n
0 G2nh

n, q
1 = t(τ(hn,n

0 ))G′
2n + τ(hn, q

1 )

= th
n,n
0 G′

2nh
n, q
0

= (0, . . . , 0, 1)L22n−1−1,0
n

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

=(0, . . . , 0, 1)[G2n−1 + 2n−1U 2n−1 ]

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
= 22q

(2q + 1).

Let us suppose the lemma to be true for all n < q. If 0 ≤ b < 2n−q−1, we can argue
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as in lemma III.2 and obtain that

th
n,n
0 G2nh

n, q
b =

22n−1−1∑
β=0

th
n−1,n−1
0 L22n−1−1,β

n h
n, q
b

= 22n−1 th
n−1,n−1
0 G2n−1h

n−1, q
b

= (2q + 1)
n∏

i=q+1

22i−1

as well as

th
n,n
0 G2nh

n, q
b = th

n,n
0 [U 2n−1 ⊗ G2n−1 + (G2n−1 − U 2n−1) ⊗ U 2n−1 ]hn, q

b

= 22n th
n−1,n−1
0 G2n−1h

n−1, q
b−2n−q−1

= (2q + 1)

n∏
i=q+1

22i−1

.

This finishes the proof.

In order to simplify the calculations, we will use the following notation

â = a mod 2n−p−1,

b̂ = b mod 2n−q−1.

Lemma III.10. For any positive integers n > p > q ≥ 0, we have

1. for all 0 ≤ a < 2n−p−1 and 0 ≤ b < 2n−q−1,

thn, p
a G2nh

n, q
b = 22n thn−1, p

a G2n−1h
n−1, q
b ,

2. for all 2n−p−1 ≤ a < 2n−p and 2n−q−1 ≤ b < 2n−q,

thn, p
a G2nh

n, q
b = 22n th

n−1, p
â G2n−1h

n−1, q

b̂
,

3. for all 0 ≤ a < 2n−p−1 and 2n−q−1 ≤ b < 2n−q,

thn, p
a G2nh

n, q
b = 22n+1−2p−2q

.

Proof. We will treat the three cases in the statement separately.
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1. To prove the first statement, use the matrix Lα,β
n and apply lemma III.2 to

deduce
thn, p

a G2nh
n, q
b =

∑
α

∑
β

thn−1, p
a Lα,β

n h
n−1, q
b

= 22nthn−1, p
a G2n−1h

n−1, q
b .

2. The second case follows from

thn, p
a G2nh

n, q
b = thn, p

a [U 2n−1 ⊗ G2n−1 + (G2n−1 − U 2n−1) ⊗ U 2n−1 ]hn, q
b

= thn, p
a [U 2n−1 ⊗ G2n−1 ]hn, q

b

= 22n−1
22n−1 th

n−1, p
a−2n−p−1G2n−1h

n−1, q
b−2n−q−1

= 22nth
n−1, p
â G2n−1h

n−1, q

b̂
.

3. The last identity may be verified as follows:

thn, p
a G2nh

n, q
b = thn, p

a [U 2n−1 ⊗ G2n−1 + (G2n−1 − U 2n−1) ⊗ U 2n−1 ]hn, q
b

= thn, p
a [U 2n−1 ⊗ G2n−1 ]hn, q

b

= thn, p
a

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
G2n−1h

n−1, q

b̂
...

G2n−1h
n−1, q

b̂

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

= 22n−2p t

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟G2n−1h
n−1, q

b̂

= 22n+1−2p−2q

.

To calculate γ(Rn
T ) we will apply the previous lemmas and recursion on n. So,∑

0 ≤ a < 2n−p

0 ≤ b < 2n−q

thn, p
a G2nh

n, q
b =

∑
0≤b<2n−q

th
n, p
0 G2nh

n, q
b +

∑
0 < a < 2n−p

0 ≤ b < 2n−q

thn, p
a G2nh

n, q
b

=
∑

0≤b<2n−q

22n−2p th
n,n
0 G2nh

n, q
b +

∑
0 ≤ a < 2n−p

0 ≤ b < 2n−q

thn, p
a G2nh

n, q
b

= 2n−q(2q + 1)22n+1−2p−2q

+ 2n−q(2n−p − 1)22n+1−2p−2q

= 22n+1−2p−2q+n−q(2q + 2n−p).
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Using this, we find, denoting Rn
T by Rn

p,qR when T = {p, p + 1, . . . , q},

γ(Rn
p,qR ) = γ(Rn

pR ) + γ(Rn
q ) + 21+p+q22n+1−2p−2q+n−q(2q + 2n−p)

= γ(Rn
pR ) + γ(Rn

q ) + 21+2n+1−2p−2q+n+p(2q + 2n−p).

To finish the calculation of the normalized epistasis of the Royal Road functions of

type II, it remains to determine their norm. We need the following result.

Lemma III.11. For any positive integers n ≥ p > q ≥ 0, we have

1. for n = p and for all 0 ≤ b < 2n−q,

th
n, p
0 h

n, q
b = th

n, n
0 h

n, q
b = 1,

2. for n > p, for all 0 ≤ a < 2n−p−1, 0 ≤ b < 2n−q−1 and also for all 2n−p−1 ≤
a < 2n−p, 2n−q−1 ≤ b < 2n−q,

thn, p
a h

n, q
b = 22n−1 th

n−1, p
â h

n−1, q

b̂
,

3. for n > p and for all 0 ≤ a < 2n−p−1, 2n−q−1 ≤ b < 2n−q,

thn, p
a h

n, q
b = 22n−2p−2q

.

Assuming n > p, it easily follows that∑
0 ≤ a < 2n−p

0 ≤ b < 2n−q

thn, p
a h

n, q
b =

∑
0≤b<2n−q

th
n, p
0 h

n, q
b +

∑
0 < a < 2n−p

0 ≤ b < 2n−q

thn, p
a h

n, q
b

= 22n−2p

2n−q + 2n−q(2n−p − 1)22n−2p−2q

=22n−2p−2q+n−q(22q

+ 2n−p − 1).

The norm ‖Rn
p,qR ‖ may now be given by

‖Rn
p,qR ‖2 = ‖Rn

pR ‖2 + ‖Rn
q ‖2 + 21+p+q22n−2p−2q+n−q(22q

+ 2n−p − 1)

= ‖Rn
pR ‖2 + ‖Rn

q ‖2 + 21+2n−2p−2q+n+p(22q

+ 2n−p − 1).

Finally, if T ⊆ {1, . . . , n}, then the normalized epistasis of the corresponding gen-

eralized Royal Road function of type II is

ε∗(Rn
T ) =

∑
p∈T Ap + 2

∑
p<q∈T 2p−2p−2q

(22q − 2q − 1)∑
p∈T BpB + 2

∑
p<q∈T 2p−2p−2q(22q − 2n−p − 1)

,
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where

Ap = 2−(2n+1−p)(22p − 2p − 1)

and

BpB = 2−(2p+1−p)(22p

+ 2n−p − 1).

For Rn
p,qR , we obtain

ε∗(Rn
p,qR ) =

∑q
i=p(2

−(2n+1−i)(22i−2i−1)) + 2
∑q

i=p+1

∑i−1
j=p(2

i−2i−2j

(22j−2j−1))∑q
i=p(2

−(2i+1−i)(22i+2n−i−1)) + 2
∑q

i=p+1

∑i−1
j=p(2

i−2i−2j (22j+2n−i−1))
.

For the “classical” Royal Road function R2, we find

ε∗(R2) = ε∗(R6
3,6) ≈ 0.93983.

In particular, note that ε∗(R1) < ε∗(R2).

1.3 Some experimental results

Although for general functions, (high) epistasis and problem difficulty for GAs are

hardly related, it appears that within fixed length classes of generalized Royal Road

functions, there is a nice correlation between these two values. This is shown in table

III.1. We compare the average number of generations needed to optimize generalized

Royal Road functions, used as a measure of problem difficulty, and the normalized

epistasis. We consider length 64 strings and use a generational GA with binary

tournament selection, a population of size 100, one-point crossover with probability

0.8 and ordinary mutation at rate 1/64. We stop the algorithm when the optimum

is discovered by the GA.

It is interesting to note that both normalized epistasis and Jones and Forrest’s fitness

distance correlation (section 7.1 of chapter I) yield the same ordering for generalized

Royal Road functions. This can be observed in table III.2 where functions are

ordered by their fitness distance correlation.

For a comparison between and more details about the practical aspects of both

metrics, we refer to [48, 67, 76]. Neither should be seen as the definitive problem

difficulty predictor. They only open the research for further classifications of fit-

ness functions. Briefly, we can say that normalized epistasis recognizes the simplest
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2 Unitation functions

f ε∗(f) mean std dev

R6
0 0.000 58.7 6.92

R6
1 0.028 75.6 18.6

R6
2 0.355 130 51.2

R6
3 0.939 551 279

R6
4 0.999 � 5000

Table III.1: Epistasis and problem difficulty of generalized Royal Road functions of type

I. We show the mean and standard deviation over 100 independent runs of the number of

generations of the GA until the optimum is reached. The GA is detailed above.

f ε∗(f)

R4
1 0.091

R4
1,4 0.188

R5
2 0.478

R5
2,5 0.527

R6
3 0.939

R6
3,6 0.940

Table III.2: Epistasis of generalized Royal Road functions. The functions are ordered by

their fitness distance correlation.

additive functions, where no interactions between bits are present, whereas fitness

distance correlation computes the deviation from linearity. In particular, both met-

rics are unable to detect more than one class of fitness functions.

2 Unitation functions

2.1 Generalities

For any string s = s�−1 . . . s0 ∈ Ω = {0, 1}�, let us denote by u(s) the Hamming

distance ds0, where 0 = 0 . . . 0 denotes the zero-string, i.e., u(s) is the number of
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bits in s with value 1. For example,

u(101101) = 4.

We call u(s) the unitation of s. A function

f : Ω → R

is said to be a unitation function, cf. section 5.3 of chapter I, if we may find some

real-valued function h : {0, . . . , �} → R such that f(s) = h(u(s)) for all s ∈ Ω.

2.2 Matrix formulation

Suppose that f = h ◦ u and define

h =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
h(0)

...

h(�)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
f(0 . . . 00)

f(0 . . . 01)

f(0 . . . 11)
...

f(1 . . . 11)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
∈ R�+1.

We will use, as before, the notation f0ff , . . . , f2ff �−1 for the components of f and

h0, . . . , h� for the components of h. In this way, each of the vectors

f =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f0ff
...

f2ff �−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ , h =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
h0

...

h�

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
completely determines the function f .

Let us inductively define, for any positive integer � > 1, the 2� × (� + 1) matrix A�

by

A� =

(
A�−1 02�−1

02�−1 A�−1

)
,

where 0� is the zero-vector of length � and A1 is the two-dimensional identity matrix.
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So,

A1 =

(
1 0

0 1

)
, A2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 0

0 1 0

0 1 0

0 0 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

and so on.

If we denote by O� the 2� × (� + 1)-dimensional zero-matrix and by I� the �-

dimensional identity matrix, this clearly implies

A� =

(
A�−1 O�−1

O�−1 A�−1

)(
I� 0�

0� I�

)
, (III.3)

as one easily verifies.

With these notations, it is easy to see that

f = A�h.

2.3 The epistasis of a unitation function

From chapter II we know that

ε∗(f) = ε2

(
f

||f ||
)

= 1 − 1

2�

tf G� f

||f ||2 .

Since, in the present context, f is completely determined by the vector h, we want

to determine a square matrix B� ∈ M�MM +1(R), with the property that

tf G� f = th B� h.

The above definition of normalized epistasis will then simplify to

ε∗(f) = 1 − 1

2�

th B� h∑�
p=0

(
�
p

)
h2

p

.
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2.4 The matrix B�

Of course, from the relation f = A�h, it obviously follows that

B� = tA�G�A�.

Let us use this relation to calculate B� = (b�
pqb ) explicitly.

First, note that (III.3) and the induction formula

G� =

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)

for G� imply that

B� = tA�G�A�

=

(
I�

t0�

t0� I�

)(
tA�−1(G�−1 + U �−1)A�−1

tA�−1(G�−1 − U �−1)A�−1

tA�−1(G�−1 − U �−1)A�−1
tA�−1(G�−1 + U �−1)A�−1

)(
I� 0�

0� I�

)
= B ′

� + B′′
�,

with

B′
� =

(
I�

t0�

t0� I�

)(
tA�−1U �−1A�−1 − tA�−1U �−1A�−1

− tA�−1U �−1A�−1
tA�−1U �−1A�−1

)(
I� 0�

0� I�

)

and

B′′
� =

(
I�

t0�

t0� I�

)(
B�−1 B�−1

B�−1 B�−1

)(
I� 0�

0� I�

)
.

In order to calculate B ′
�, we need the following result:

Lemma III.12. For any positive integer �, consider the matrix

C� = (cpqc ) = tA�U �A� ∈ M�MM +1(R).

Then, for any 0 ≤ p, q ≤ �, we have

cpqc =

(
�

p

)(
�

q

)
.
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Proof. Let us argue by induction on �. For � = 1, the matrix A� is the two-

dimensional identity matrix, hence the assertion is obviously true. Assume the

statement to be correct for 1, . . . , � − 1, and let us verify it in dimension �. Put

v� =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
(

�
0

)(
�
1

)
...(
�
�

)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ∈ R�+1.

Then

C� = tA�U �A�

=

(
I�

t0�

t0� I�

)(
tA�−1

tO�−1

tO�−1
tA�−1

)(
U �−1 U �−1

U �−1 U �−1

)(
A�−1 O�−1

O�−1 A�−1

)(
I� 0�

0� I�

)

=

(
I�

t0�

t0� I�

)(
C�−1 C�−1

C�−1 C�−1

)(
I�

t0�

t0� I�

)

=

(
I�

t0�

t0� I�

)(
v�−1

v�−1

)(
tv�−1,

tv�−1

)(I� 0�

0� I�

)
.

Since

(
I�

t0�

t0� I�

)(
v�−1

v�−1

)
=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

(
�−1
0

)(
�−1
1

)
+
(

�−1
0

)
...(

�−1
�−1

)
+
(

�−1
�−2

)(
�−1
�−1

)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= v�,

we find C� = v�
tv�, whence the assertion.

It now follows that

B
′

� =

(
I�

t0�

t0� I�

)(
C�−1 −C�−1

−C�−1 C�−1

)(
I� 0�

0� I�

)

=

(
I�

t0�

t0� I�

)(
v�−1

−v�−1

)(
tv�−1,−tv�−1

)(I� 0�

0� I�

)
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and, as one easily verifies that

(
I�

t0�

t0� I�

)(
v�−1

−v�−1

)
=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

(
�
0

)(
�
1

)
�−2

�
...(

�
p

)
�−2p

�
...

−(�
�

)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

we find that

B
′

� = (b′�,pq) =

((
�

p

)(
�

q

)
(� − 2p)

�

(� − 2q)

�

)
.

The next result calculates the matrix B
′′

� = (b′′�,pq):

Lemma III.13. The components b′′�,pq of the matrix B
′′

� are determined by

1. b
′′

�,00 = b�−1
00 , b

′′

�,�� = b�−1
�−1,�−1, b

′′

�,0� = b�−1
0,�−1,

2. if 1 ≤ q < �, then b
′′

�,0q = b�−1
0q + b�−1

0,q−1 and b
′′

�,�q = b�−1
�−1,q + b�−1

�−1,q−1,

3. if 1 ≤ p, q < �, then b
′′

�,pq = b�−1
pqb + b�−1

p,qb −1 + b�−1
pb −1,q + b�−1

pb −1,q−1.

Proof. This is a straightforward consequence of

B
′′

� =

(
I�

t0�

t0� I�

)(
B�−1 B�−1

B�−1 B�−1

)(
I� 0�

0� I�

)
.

Using the previous result and the fact that B� = B
′

� + B
′′

� , we obtain:

Corollary III.14. The components b�
pq of the matrix B� are determined by

1. b�
00 = b�

�� = 1 + �, b�
0� = b�

�0 = 1 − �,

2. if 1 ≤ q < �, then we have

b�
0q = b�−1

0q + b�−1
0q−1 +

(
�

q

)
� − 2q

�

and

b�
�q = b�−1

�−1,q + b�−1
�−1,q−1 −

(
�

q

)
� − 2q

�
,
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3. if 1 ≤ p, q < �, then we have

b�
pqb = b�−1

pqb + b�−1
pb −1,q + b�−1

p,qb −1 + b�−1
pb −1,q−1 +

(
�

p

)(
�

q

)
(� − 2p)

�

(� − 2q)

�
.

We may now finally prove:

Proposition III.15. For any 0 ≤ p, q ≤ �, the component b�
pq of the matrix B� is

given by

b�
pqb =

(
�

p

)(
�

q

)(
1 +

(� − 2p)(� − 2q)

�

)
.

Proof. The previous result may be written as

b�
pqb =

1∑
i,j=0

b�−1
pb −i,q−j +

((
� − 1

p

)
−
(

� − 1

p − 1

))((
� − 1

q

)
−
(

� − 1

q − 1

))
.

Iterating, we obtain

b�
pqb =

(
�

p

)(
�

q

)
b0
00 +

�−1∑
r=0

B�
rpB

�
rq,

where

B�
rp = A�

rp − A�
r,p−1,

with

A�
rp =

r∑
i=0

(
r

i

)(
� − r − 1

p − i

)
.

Since it is easy to see that, for any r ≤ �, we have

A�
rp =

(
� − 1

p

)
,

it follows that

B�
rp =

(
� − 1

p

)
−
(

� − 1

p − 1

)
,

which finishes the proof.

We thus have proved:

Theorem III.16. Let f = h ◦ u : Ω → R be a unitation function with associated

function h : {0, . . . , �} → R. Then the normalized epistasis of f is given by

ε∗(f) = 1 − 1

2�

∑�
p,q=0

(
�
p

)(
�
q

) (
1 + (�−2p)(�−2q)

�

)
h(p)h(q)∑�

p=0

(
�
p

)
h(p)2

. (III.4)
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Figure III.1: Pictorial representation of the unitation function gz,a.

2.5 Experimental results

Let us now link the normalized epistasis of a unitation function f , as calculated

in the previous section, to the performance of a standard GA on f . As a measure

of problem difficulty, we again use the number of generations needed to reach the

optimum. The GA has the same characteristics as the one used for the Royal

Road functions: it is generational, with a population of size 100, and it uses binary

tournament selection, one-point crossover at rate 0.8 and ordinary mutation at rate

1/�. We present the mean and standard deviation computed over 100 independent

runs.

Example 1

Just as in [14] and similar to a construction in section 5.3 of chapter I, we define for

any integer 0 ≤ z ≤ � and any 0 ≤ a ≤ 1 the unitation function gz,a by

gz,a(s) =

⎧⎨⎧⎧⎩⎨⎨
a
z
(z − u(s)) if u(s) ≤ z,

1
�−z

(u(s) − z) otherwise.

The function is depicted in figure III.1.

Due to the presence of the local optimum a, it is clear that deception will contribute

to slowing down the GA. For high values of a in combination with values of z much

100



2 Unitation functions

a ε∗(gz,a) mean std dev

0.1 0.219 97.53 10.26

0.2 0.253 99.52 11.20

0.3 0.284 97.61 11.83

0.4 0.309 96.25 10.25

0.5 0.329 96.50 9.906

0.6 0.344 97.49 10.18

0.7 0.355 147.8 487.7

0.8 0.362 444.0 1250

0.9 0.365 885.1 1796

Table III.3: Problem difficulty compared to epistasis for gz,a, with � = 100 and z = 50.

Note that for a ≥ 0.7, the distribution of number of generations adheres more to a log-

normal than to a normal distribution.

greater than 0.5, it may also cause the GA to not always finding the global optimum.

We refer to [14] for a detailed study of this phenomenon.

Fixing � = 100, z = 50 and comparing epistasis values and problem difficulty for

varying values of 0 ≤ a ≤ 1, we are led to table III.3, from which it becomes clear

that the epistasis increases with a increasing. The GA, however, does not distinguish

between low values of a, say 0 ≤ a ≤ 0.6. Only when a becomes significantly large,

deception starts to play its role of slowing down the GA.

Example 2

For any 0 ≤ z ≤ � and 0 ≤ a ≤ 1, define the unitation function fz,aff by

fz,aff (s) =

⎧⎨⎧⎧⎩⎨⎨au(s)
z

if u(s) ≤ z

a + (1 − a)u(s)−z
�−z

if z < u(s) ≤ �.

This function is depicted in figure III.2.

The inflection point z has fitness value fz,aff (z) = a. Obviously, when z = 0 or z = �,

or when a = z
�
, we are in the linear case and ε∗(fz,aff ) = 0. In the table below, still

with � = 100, we compare epistasis and problem difficulty for z = 75 and varying a.
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number of ones

fi
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s

0
0

1

1

z

a

Figure III.2: Pictorial representation of the unitation function fz,a.

We first note that our GA sees no difference between any of the functions with

0 < a < 1, because it uses tournament selection: the functions are monotonically

and strictly increasing, and the selection operator only observes that fz,aff (s) > fz,aff (t)

when u(s) > u(t). The cases a = 0 and a = 1 are clearly different. In the former,

the GA needs to discover, by accident, a string with 75 ones in it before it can pick

up a signal. In the latter, it is fully guided and it has reached the optimum when it

hits a string with 75 ones.

The epistasis values reflect the difficulties at a = 0, but do not distinguish between

values near one and exactly one. Moreover, it cannot know that we are using

tournament selection, and that the divergence from linearity in the range 0 < a < 1

is completely irrelevant. To demonstrate the difference with fitness proportional

selection, we present in table III.5 epistasis and problem difficulty for fz,aff with � = 30

and z = 25 (we chose a smaller string length because the GA with proportional

selection is not able to solve any of the functions within a reasonable amount of

time because of too little selective pressure).

The change in selection operator has not modified the situation for the extreme

points a = 0 and a = 1 (very hard and very easy). For the intermediate values,

however, the problem difficulty now increases nicely with a increasing, while the

epistasis values first decrease and then increase again.
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3 Template functions

a ε∗(fz,aff ) mean std dev

0.0 0.999998 � 50000

0.1 6.2 × 10−8 97.95 10.28

0.2 1.1 × 10−8 96.97 11.18

0.3 3.4 × 10−9 97.47 8.948

0.4 1.1 × 10−9 97.29 9.539

0.5 3.7 × 10−10 97.43 10.17

0.6 9.3 × 10−11 97.05 10.30

0.7 7.6 × 10−12 97.68 10.02

0.8 5.8 × 10−12 97.96 10.18

0.9 4.1 × 10−11 97.20 9.635

1.0 9.3 × 10−11 14.17 3.225

Table III.4: Problem difficulty compared to epistasis for fz,a, with � = 100 and z = 75.

3 Template functions

3.1 Basic properties

The “template functions” we are about to consider calculate the fitness of a string

of length �, by sliding a fixed string t of length n ≤ � (the “template”) over it. Each

time an occurrence of t in s is found, a fixed amount a is added to the fitness of

s. For convenience’s sake, we will assume throughout that a = 1 and that t is the

length n string 11 . . . 11. So, the template functions depend only on the parameters

� and n and will be denoted by T n
�TT . For example,

T 2
�TT (1�) = T 2

�TT (11 . . . 11) = � − 1,

because 11 may be found � − 1 times in the length � string 11 . . . 11, whereas

T 3
�TT (01110 . . . 011) = 1.

It seems reasonable to expect that increasing the length n of the template will also

increase the epistasis of T n
�TT , in view of the strong linkage between the different loci.

The calculations below will make these statements more precise.
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a ε∗(fz,aff ) mean std dev

0.0 0.9995 7009 3578

0.1 3.7 × 10−4 38.29 12.52

0.2 6.9 × 10−5 45.38 13.99

0.3 2.2 × 10−5 51.29 17.73

0.4 8.1 × 10−6 61.12 24.43

0.5 3.1 × 10−6 85.32 30.63

0.6 1.0 × 10−6 144.9 78.43

0.7 2.5 × 10−7 384.0 320.7

0.8 1.2 × 10−8 868.1 877.7

0.9 3.8 × 10−8 1818 1851

1.0 1.9 × 10−7 13.71 7.822

Table III.5: Problem difficulty compared to epistasis for fz,a, with � = 30 and z = 25.

The GA now uses fitness proportional selection. Note: from a ≈ 0.6 onwards, and for

a = 0, the distribution of the number of generations to hit the optimum adheres more

closely to a log-normal distribution than to a normal one. This explains the excessive

standard deviations. For a = 0, a maximum limit of 10,000 generations must also be

taken into account.

The main purpose of this section is to explicitly calculate the normalized epistasis of

the functions T n
�TT . The first step of this consists in evaluating ‖T n

� ‖ where T n
� ∈ R2�

denotes the vector corresponding to T n
�TT , i.e.,

T n
� =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
T n

�TT (00 . . . 0)
...

T n
�TT (11 . . . 1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

To simplify this calculation, let us first note that for any n ≤ �, we have

T n
� =

(
T n

�−1

T n
�−1 + Dn

�−1

)
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3 Template functions

with

Dn
�−1 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−2

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ∈ R2�−1

.

Here, as before, we denote for any positive integer i by 0i the zero vector in R2i

and

by ui the vector in R2i

all of whose entries have value 1. For example, if n = 2,

T 2
1 =

(
0

0

)
, T 2

2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0

0

0

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ and T 2
3 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0

0

0

1

0

0

1

2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

We need to know more about the structure of T n
� . An easy induction argument

yields:

Lemma III.17. For any 1 ≤ i ≤ n, we have

T n
n+i =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

T n
n+i−1

T n
n+i−2
...

T n
n

0̃i
n

ui−1

2ui−2

...

iu0

i + 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

,

where 0̃i
n = t (0, . . . , 0) ∈ R2n−2i

.

105



Chapter III. Examples

Using this, we may prove:

Lemma III.18. For any 1 ≤ i ≤ n, we have

tT n
n+iD

n
n+i = 2i+1 − 1.

Proof. It suffices to note that tT n
n+iD

n
n+i is the sum of the 2i+1 last components of

T n
n+i. By using the previous result, we then have

tT n
n+iD

n
n+i = (i + 1) + 20 i + 21(i − 1) + · · · + 2i−1 1 + 2i 0

= (i + 1) +
i∑

k=0

2k(i − k).

Since
∑i

k=0 k2k = 2 + (i − 1)2i+1, it easily follows that tT n
n+iD

n
n+i = 2i+1 − 1.

From this one deduces:

Lemma III.19. For any 0 ≤ i ≤ n, we have∥∥∥∥T n
n+i

∥∥∥∥2
= 2i(3i − 1) + 2.

Proof. Let us again argue by induction on i. The statement obviously holds true

for i = 0. In the general case, we have

∥∥∥∥T n
n+i

∥∥∥∥2
= tT n

n+iT
n
n+i =

(
tT n

n+i−1,
tT n

n+i−1 + tDn
n+i−1

)( T n
n+i−1

T n
n+i−1 + Dn

n+i−1

)
= 2

∥∥∥∥T n
n+i−1

∥∥∥∥2
+ 2 tT n

n+i−1D
n
n+i−1 +

∥∥∥∥Dn
n+i−1

∥∥∥∥2
,

where

∥∥∥∥Dn
n+i−1

∥∥∥∥2
= tDn

n+i−1D
n
n+i−1 =

(
t0n+i−2, . . . ,

t0i,
tui

)
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0n+i−2

...

0i

ui

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= ‖ui‖2 = 2i.
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Using the induction hypothesis and the previous lemma, it thus follows by induction

that ∥∥∥∥T n
n+i

∥∥∥∥2
= 2

(
2i−1(3(i − 1) − 1) + 2

)
+ 2

(
2i − 1

)
+ 2i = 2i(3i − 1) + 2.

Using this, we may prove:

Lemma III.20. For any n ≤ �, the sum of the components of T n
� is given by

tT n
� u� = 2�−n(� − n + 1).

Proof. Let us use a�,n to denote the sum of the components of T n
� . Then

a�,n = tT n
� u� =

(
tT n

�−1,
tT n

�−1 + tDn
�−1

)(u�−1

u�−1

)
= 2tT n

�−1u�−1 + tDn
�−1u�−1 = 2a�−1,n + Tr(Dn

�−1)

= 2a�−1,n + 2�−n.

It thus follows that

a�,n = 2a�−1,n + 2�−n = 22a�−2,n + 22�−n = · · · = 2pa�−p,n + p2�−n.

Putting p = � − n, we obtain

a�,n = 2�−nan,n + (� − n)2�−n = 2�−n tT n
nun + 2�−n(� − n) = 2�−n(� − n + 1),

which proves the assertion.

Combining these lemmas yields:

Proposition III.21. For any n ≤ �, we have

‖T n
� ‖2 =

⎧⎨⎧⎧⎩⎨⎨2�−n(3(� − n) − 1) + 2 if n ≤ � ≤ 2n,

2�−n(3(� − n) − 1) + 2�−2n(2 + (� − 2n)(� − 2n − 1)) if 2n ≤ �.
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Proof. The first case (n ≤ � ≤ 2n) is just lemma III.19. In the second case (2n ≤ �),

we again apply induction on �. First, note that

‖T n
� ‖2 = tT n

� T n
� =

(
tT n

�−1,
tT n

�−1 + tDn
�−1

)( T n
�−1

T n
�−1 + Dn

�−1

)
= 2

∥∥∥∥T n
�−1

∥∥∥∥2
+ 2tT n

�−1D
n
�−1 +

∥∥∥∥Dn
�−1

∥∥∥∥2
, (III.5)

with
∥∥∥∥Dn

�−1

∥∥∥∥2
= ‖u�−n‖2 = 2�−n. On the other hand,

tT n
�−1D

n
�−1 =

(
tT n

�−2,
tT n

�−2 + tDn
�−2

)
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0�−2

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= tT n
�−2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−3

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+ tDn
�−2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−3

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
...

= tT n
�−n+1

(
0�−n

u�−n

)
+

n−1∑
k=2

tDn
�−k

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−k−1

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .
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3 Template functions

Again using the recursive form of the template functions, we obtain that

tT n
�−1D

n
�−1 =

(
tT n

�−n, tT n
�−n + tDn

�−n

)(0�−n

u�−n

)

+
n−1∑
k=2

(
t0�−k−1, . . . ,

t0�−k−n+1,
tu�−k−n+1

)
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0�−k−1

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= tT n

�−nu�−n + ‖u�−2n+1‖2 +

n−1∑
k=2

‖u�−k−n+1‖2

= tT n
�−nu�−n + 2�−2n+1 + 2�−n+1

n−1∑
k=2

2−k

= tT n
�−nu�−n + 2�−2n(2n − 2)

= 2�−2n(� − 2n − 1 + 2n).

Substituting this in (III.5) and denoting ‖T n
� ‖2 by b�,n, we obtain

b�,n = 2b�−1,n + 2�−2n+1(� − 2n + 3.2n−1 − 1)

= 22b�−2,n + 2�−2n+1
(
2(� − 2n + 3.2n−1) − (1 + 2)

)
...

= 2pb�−p,n + 2�−2n+1

(
p(� − 2n + 3.2n−1) −

p∑
k=1

k

)
.

Putting p = � − 2n finally yields

b�,n = 2�−2nb2n,n + 2�−2n+1(� − 2n)

(
� − 2n + 3.2n−1 − � − 2n + 1

2

)
.

Since lemma III.19 implies b2n,n = 2n(3n − 1) + 2, the result now easily follows.
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3.2 Epistasis of template functions

In order to determine the normalized epistasis of template functions, it remains to

calculate γ(T n
�TT ) = tT n

� G�T
n
� . To realize this, let us first note that, for all n ≤ �,

γ(T n
�TT ) = tT n

� G�T
n
�

=
(

tT n
�−1,

tT n
�−1 + tDn

�−1

)(G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)(
T n

�−1

T n
�−1 + Dn

�−1

)
= 4tT n

�−1G�−1T
n
�−1 + 4tT n

�−1G�−1D
n
�−1 + tDn

�−1G�−1D
n
�−1 + tDn

�−1U �−1D
n
�−1,

where the last terms are

tDn
�−1U �−1D

n
�−1 =

(
t0�−2, . . . ,

t0�−n,
tu�−n

)⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1 · · · 1
...

. . .
...

1 · · · 1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0�−2

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= 2�−n ‖u�−n‖2 = 4�−n,

and

tDn
�−1G�−1D

n
�−1 =

(
t0�−2, . . . ,

t0�−n,
tu�−n

)(G�−2 + U �−2 G�−2 − U �−2

G�−2 − U �−2 G�−2 + U �−2

)⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−2

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

=
(

t0�−3, . . . ,
t0�−n,

tu�−n

)
(G�−2 + U �−2)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−3

...

0�−n

u�−n

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
...

= tu�−nG�−nu�−n + (n − 1)4�−n

=
2�−n−1∑
i,j=0

gij + (n − 1)4�−n = n4�−n.
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Let us put

αk =
(

t0�−k−1, . . . ,
t0�−n,

tu�−n

)
G�−kD

n
�−k

βk =
(

t0�−k−1, . . . ,
t0�−n,

tu�−n

)
G�−kT

n
�−k,

then the calculation of the second term in the above expression for γ(T n
�TT ) depends

on the following result:

Lemma III.22. For any 1 ≤ k ≤ � − n + 1, we have

αk = (n + 1 − k)2k−14�−n−k+1

βk = 2βk+1 + (n + 1 − k)2k4�−n−k.

Proof. We calculate αk by recursion. As αk is equal to

(
t0�−k−1, . . . ,

t0�−n, tu�−n

)(G�−k−1 + U �−k−1 G�−k−1 − U �−k−1

G�−k−1 − U �−k−1 G�−k−1 + U �−k−1

)⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−k−1

...

0�−n−k+1

u�−n−k+1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

clearly,

αk =
(

t0�−k−2, . . . ,
t0�−n,

tu�−n

)
(G�−k−1 + U �−k−1)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−k−2

...

0�−n−k+1

u�−n−k+1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

=
(

t0�−k−2, . . . ,
t0�−n,

tu�−n

)
G�−k−1

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−k−2

...

0�−n−k+1

u�−n−k+1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+ 2�−n2�−n−k+1

...

= tu�−nG�−n

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−n−1

...

0�−n−k+1

u�−n−k+1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ + (n − k)2k−14�−n−k+1,
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if � − n − k + 1 ≥ 0. Now, again using the recursive formula for G�−n, we have

αk = 2tu�−n−1G�−n−1

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0�−n−2

...

0�−n−k+1

u�−n−k+1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+ (n − k)2k−14�−n−k+1

...

= 2k−1tu�−n−k+1G�−n−k+1u�−n−k+1 + (n − k)2k−14�−n−k+1

= 2k−1
2�−n+1−k−1∑

i,j=0

gij + (n − k)2k−14�−n−k+1 = (n + 1 − k)2k−14�−n−k+1.

A similar argument yields the expression for β.

From this, it follows:

Lemma III.23. For all 2n < �,

tT n
�−1G�−1D

n
�−1 = 4�−n−1(n2 − 3n + 2�).

Proof. Using the symmetry of G� and the previous result, we obtain

tT n
�−1G�−1D

n
�−1 = β1 = 2β2 + 4�−n−12n = · · · = 2iβiββ +1 + 4�−n−1i(2n + 1 − i).

In particular, if i = n − 2, then

tT n
�−1G�−1D

n
�−1 = 2n−2βnββ −1 + 4�−n−1(n − 2)(n + 3)

= 2n−2
(

t0�−n, tu�−n

)
G�−n+1T

n
�−n+1 + 4�−n−1(n − 2)(n + 3)

= 2n−2
(
2tu�−nG�−nT

n
�−n + tu�−nG�−nDn

�−n

+ tu�−nU �−nD
n
�−n

)
+ 4�−n−1(n − 2)(n + 3).

As tu�−nG�−n =
(∑2�−n−1

j=0 g0j

)
tu�−n = 2�−n tu�−n and tu�−nU �−n = 2�−n tu�−n,

using this, and lemma III.20, we have

tT n
�−1G�−1D

n
�−1 = 2�−1

(
tT n

�−nu�−n + Tr(Dn
�−n)

)
+ 4�−n−1(n − 2)(n + 3)

= 4�−n−1(n2 − 3n + 2�).
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Combining the previous results, we obtain

γ(T n
�TT ) = tT n

� G�T
n
� = 4tT n

�−1G�−1T
n
�−1 + 4tT n

�−1G�−1D
n
�−1

+ tDn
�−1G�−1D

n
�−1 + tDn

�−1U �−1D
n
�−1

= 4γ(T n
�TT −1) + 4�−n(n2 − 3n + 2�) + n4�−n + 4�−n

= 4γ(T n
�TT −1) + 4�−n(n2 + 2 (� − n) + 1),

if � − 2n + 1 ≥ 0. Let us denote γ(T n
�TT ) by c�,n, then

c�,n = 4c�−1,n + 4�−n(n2 − 2n + 2� + 1)

= 42c�−2,n + 4�−n
(
2(n2 − 2n + 2� + 1) − 2

)
.
. (III.6)
..

= 4pc�−p,n + 4�−n
(
p(n2 − 2n + 2� + 1) − p(p − 1)

)
,

with 2n < �. In particular, for p = � − 2n + 1,

c�,n = 4�−2n+1c2n−1,n + 4�−n(� − 2n + 1)(n2 + � + 1).

It remains to calculate c2n−1,n = γ(T n
2TT n−1). We will do this through the following

result:

Lemma III.24. For all 0 ≤ i ≤ n, we have

γ(T n
nTT +i) = 4i(n(i + 1)2 + 1 +

i

3
(4 − i2)).

Proof. For i = 0, we have

γ(T n
nTT ) = tT n

nGnT
n
n = (0, . . . , 0, 1)Gn

t(0, . . . , 0, 1) = g2n−1,2n−1 = n + 1,

and the statement is true. In the general case, we proceed by induction on i. Indeed,

with notations as before,

γ(T n
nTT +i) = cn+i,n = tT n

n+iGn+iT
n
n+i

= 4 tT n
n+i−1Gn+i−1T

n
n+i−1 + 4 tT n

n+i−1Gn+i−1D
n
n+i−1

+ tDn
n+i−1Gn+i−1D

n
n+i−1 + tDn

n+i−1Un+i−1D
n
n+i−1

= 4cn+i−1,n + 4β1 + 4in + 4i,
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with β1 = tT n
n+i−1Gn+i−1D

n
n+i−1 (note that � = n + i).

Arguing recursively, as in the proof of lemma III.23, we obtain

cn+i,n = 4cn+i−1,n + 4.2i−1βiββ + 4i−1(i − 1)(2n + 1 − (i − 1)) + (n + 1)4i.

But

βiββ =
(

t0n−1, . . . ,
t0i,

tui

)
GnT

n
n

=
(

t0n−2, . . . ,
t0i,

tui

)
(Gn−1 + Un−1)

t(0, . . . , 0, 1)

=
(

t0n−2, . . . ,
t0i,

tui

)
Gn−1

t(0, . . . , 0, 1) + ‖ui‖2

...

=
(

t0i,
tui

)
Gi+1

t(0, . . . , 0, 1) + (n − i − 1) ‖ui‖2

= tuiGi
t(0, . . . , 0, 1) + (n − i) ‖ui‖2 = (n − i + 1)2i.

So, the expression of cn+i,n reduces to

cn+i,n = 4cn+i−1,n + 4i
(
(2n + 1)i − i2 + (n + 1)

)
= 42cn+i−2,n + 4i

(
(2n + 1)(i + (i − 1)) − (

i2 + (i − 1)2)+ 2(n + 1)
)

...

= 4pcn+i−p,n + 4i

(
(2n + 1)

p−1∑
k=0

(i − k) −
p−1∑
k=0

(i − k)2 + p(n + 1)

)
.

Using the fact that
∑p−1

k=0 k = pp−1
2

and
∑p−1

k=0 k2 = 1
6
(2p3 − 3p2 + p), it follows that

cn+i,n = 4pcn+i−p,n + 4ip

(
n(2i − p + 2) + i(p − i) +

1

3
(4 − p2)

)
.

Finally, for p = i, we have

cn+i,n = 4icn,n + 4ii

(
n(i + 2) +

1

3
(4 − i2)

)
= 4i(n + 1) + 4ii

(
n(i + 2) +

1

3
(4 − i2)

)
= 4i

(
n(i + 1)2 + 1 +

i

3
(4 − i2)

)
.

This proves our assertion.
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Combining these lemmas yields:

Proposition III.25. For any pair of integers n ≤ �, we have

γ(T n
�TT ) =

⎧⎨⎧⎧⎩⎨⎨4�−n
(
1 + n(� − n + 1)2 + �−n

3
(4 − (� − n)2)

)
if n ≤ � ≤ 2n,

4�−n
(
(� − 2n)(n2 + � + 2) + n

3
(2n2 + 7) + 2n2 + 1

)
if 2n ≤ �.

Proof. The expression for n ≤ � ≤ 2n has been proved in lemma III.24. On the

other hand, the case 2n ≤ � easily follows from the expression of c�,n given in (III.6)

with p = � − 2n.

Combining the previous results finally yields the epistasis of the template function

T n
�TT :

Theorem III.26. The epistasis of the template function T n
�TT is given by

ε∗(T n
�TT ) =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪
1 − 1+n(�−n+1)2+

(�−n)
3 (4−(�−n)2)

2n(3(�−n)−1+2n−�+1)
if n ≤ � ≤ 2n

1 − (�−2n)(n2+�+2)+ n
3
(2n2+7)+2n2+1

2n(3(�−n)−1)+(�−2n)2+2(n+1)−�
if 2n ≤ �.

Applying the previous formula to the case n = �, gives a high epistatic value

ε∗(T �
�TT ) = 1 − 1 + �

2�
.

On the other hand, for general values of �, the minimal value for epistasis is easily

seen to be given by the case n = 1:

ε∗(T 1
�TT ) = 1 − (� − 2)(� + 3) + 6

2(3(� − 1) − 1) + (� − 2)2 + 4 − �
= 1 − �2 + �

�2 + �
= 0.

Indeed, in this case, T 1
�TT just counts the number of 1′s in a string and T 1

�TT =
∑�−1

i=0 gi,

where gi(s) = δ1,si
is the Kronecker function with value 1 when si = 1 and zero

elsewhere.
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3.3 Experimental results

This section shows, with some explicit runs, that for template functions the epistasis

measure is a nice indicator of problem difficulty. We again measure the latter by

counting the number of generations required to first hit the optimum. We also stick

to our generational GA with binary tournament selection, one-point crossover at

rate 0.8, mutation at a rate of one over the string length, and a population size

of 100 in the first experiment, and of the size of the string length in the second

experiment, where the latter is varied.

We first fix the string length � and calculate both the epistasis and problem difficulty

for the template functions T n
�TT , with � = 100 and 1 ≤ n ≤ 17. The results are shown

in figure III.3. As expected, the epistasis strongly correlates with problem difficulty,

i.e., as we increase the size n of the template, we notice an increase of both epistasis

and average number of generations needed to reach the optimum. The reason for

not going beyond n = 17 is that for large n, template functions become needle-in-

a-haystack problems; the probability of randomly obtaining a sequence of n ones

becomes exponentially small with n increasing.

A second experiment, detailed in figure III.4, is to fix the size of the template

n = 10 and calculate the epistasis for different values of � (of course, n ≤ �). Here, a

negative correlation between epistasis and problem difficulty is observed, which can

be motivated as follows. As the string length increases, the template length becomes

proportionally smaller. This results in (slightly) smaller epistasis values. The effect

on the GA is a higher number of generations required to find the optimum: the

template is smaller, and as a result, fewer mutations occur near a template, and

fewer crossovers combine parts of templates.
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Figure III.3: Problem difficulty and epistasis for increasing template lengths 1 ≤ n ≤ 17

and a fixed string length � = 100. In plot (a) we show, computed over 100 independent

runs, the mean and standard devation of the number of generations to hit the optimum.

The GA is described in the text; it is the same as the one used for the Royal Road and

unitation functions. In plot (b), we computed the epistasis using the explicit formula of

theorem III.26.
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Figure III.4: Problem difficulty and epistasis for increasing string lengths and a fixed

template length n = 10 (same set-up as in figure III.3)
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Chapter IV

Walsh transforms

Just as the ordinary Fourier transform is extremely well-suited to study periodicity

and density properties of real or complex valued functions, its binary counterpart,

the Walsh or Walsh–Hadamard transform [6], appears to play a fundamental role in

the analysis of GAs. In particular, as the Walsh transform and its associated Walsh

coefficients essentially describe averages of the function with respect to certain well-

determined elementary schemata, they allow for an elegant and rather practical

description of its epistasis.

In this chapter we first develop the basic machinery of Walsh transforms, both in

their classical and matrix setting, and show how they relate to schema averages. The

classical setting in sections 1 and 2 largely follows Goldberg [24, 25] and Heckendorn

and Whitley [33]; section 3 is based on Suys [95]. We then apply this to the study of

epistasis, showing how the “Walsh point of view” provides an alternative and much

more straightforward treatment of some of the examples considered in the previous

chapter.



1 The Walsh transform

1.1 Walsh functions

As before, we let Ω denote the set {0, 1}�, which we identify with the set of length

� binary strings s = s�−1 . . . s0. Let us consider an arbitrary function

f : Ω → R : s �→�� f(s).

Our aim is to define functions ψt, t ∈ Ω, the so-called Walsh functions, for which f

may canonically be written as

f(s) =
∑
t∈Ω

vtψt(s).

As before, we will sometimes identify elements t ∈ Ω with their numerical value,

viewing t as the binary expansion of some non-negative integer 0 ≤ t < 2�. So,

f(s) =
∑
t∈Ω

vtψt(s) =

2�−1∑
t=0

vtψt(s).

The t-th Walsh function ψt is defined as follows:

ψt(s) =

⎧⎨⎧⎧⎩⎨⎨+1 if the number of loci where both s and t have value 1 is even,

−1 if the number of loci where both s and t have value 1 is odd.

So, for example, ψ11010(01110) = 1. Also, with � = 5, we have ψ19(9) = −1, as 9 is

identified with 01001 and 19 with 10011.

Alternative ways of defining ψt may be given as follows.

First, define the conjunction ∧ in Ω by putting for any s = s�−1 . . . s0 and t =

t�−1 . . . t0 in Ω,

s ∧ t = (s�−1 ∧ t�−1) . . . (s0 ∧ t0),

where x ∧ y is just the product xy, for any x, y ∈ {0, 1}. If we let u : Ω → N denote

the unitation function, i.e., for any s ∈ Ω we let u(s) denote the number of loci with

value 1 in s, then it is easy to see that

ψt(s) = (−1)u(s∧t).
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Next, note that we may define the scalar product s · t of s, t ∈ Ω in the obvious way:

s · t =
�−1∑
i=0

siti.

It then follows that

ψt(s) = (−1)s·t =
�−1∏
i=0

(−1)siti .

Let us point out that what we just defined are actually the so-called Hadamard

functions. The “correct” definition of the Walsh functions should be

ψt(s) =
�−1∏
i=0

(−1)sit(�−1)−i ,

which is, of course, just a permutation of the Hadamard functions. In most practical

applications this definition is usually easier, as it allows for a “fast Fourier”-like

implementation, for example. The Hadamard definition, however, is of more use in

theoretical applications in view of its recursive properties, as we will see below.

1.2 Properties of Walsh functions

Let us mention some first properties of the Walsh functions.

a. Symmetry : From the very definition of the Walsh functions, it follows that

∀s, t ∈ Ω : ψt(s) = ψs(t).

b. Exclusive-or property : Define the exclusive-or of s, t ∈ Ω to be

s ⊕ t = (s�−1 ⊕ t�−1) . . . (s0 ⊕ t0),

where, for each x, y ∈ {0, 1}, we put

x ⊕ y =

⎧⎨⎧⎧⎩⎨⎨1 if x �=�� y

0 if x = y.
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(Viewing x and y as elements of Z/2Z, i.e., working modulo 2, this is of course

just the sum of x and y). For any s, t, t′ ∈ Ω we now have∏
(−1)siti

∏
(−1)sit

′
i =

∏
(−1)si(ti+t′i) =

∏
(−1)si(ti⊕t′i).

It then follows that

∀s, t, t′ ∈ Ω : ψt(s)ψt′(s) = ψt⊕t′(s).

c. Conjunction compression: It is easy to verify that

∀s, t ∈ Ω : ψt(s) = ψs∧t(s).

Indeed, it suffices to note that

ψs∧t(s) = (−1)u(s∧(s∧t)) = (−1)u(s∧t) = ψt(s).

As a first corollary of these properties, let us mention:

Lemma IV.1. For all t, t′ ∈ Ω, we have∑
s∈Ω

ψt(s)ψt′(s) = 2� δt,t′ ,

where δt,t′ is the Kronecker delta.

Proof. We have ∑
s∈Ω

ψt(s)ψt′(s) =
∑
s∈Ω

ψt⊕t′(s).

If t = t′, then t ⊕ t′ = 0 . . . 0, so ψt⊕t′(s) = 1 for any s ∈ Ω. In this case, the above

sum is equal to 2�.

If t �=�� t′, then we claim that the above sum is equal to 0. Of course, since t �=�� t′ is

equivalent to t ⊕ t′ �= 0�� . . . 0, it suffices to check that if t �= 0 then�� ∑
s ψt(s) = 0.

Since t = t�−1 . . . t0 �= 0�� . . . 0, at least one component ti has value 1. Let us suppose

t0 = 1 for notational convenience. Any s ∈ Ω may be written as s = ŝs0 with

ŝ ∈ Ω�−1 = {0, 1}�−1. In particular, t = t̂1 for some t̂ ∈ Ω�−1. Then∑
s∈Ω

ψt(s)=
∑
s∈Ω

(−1)ŝ·t̂(−1)s0

=
∑

ŝ∈Ω�−1

(s0=0)

(−1)ŝ·t̂ −
∑

ŝ∈Ω�−1

(s0=1)

(−1)ŝ·t̂ = 0.
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If we put t′ = 0 in the expression of the previous lemma, we directly obtain:

Corollary IV.2. Except for ψ0 ≡ 1, all Walsh functions have a zero average:

∑
s∈Ω

ψt(s) =

⎧⎨⎧⎧⎩⎨⎨2� if t = 0

0 if t �= 0�� .

For any f : Ω → R, let us now define vt ∈ R by

vt =
1

2�

∑
s∈Ω

f(s)ψt(s).

We call vt the t-th Walsh coefficient of f . As an example, since ψ0 ≡ 1, clearly v0

is the average value of f .

Proposition IV.3. With the above definitions, for any f : Ω → R, we have

f(s) =
∑
t∈Ω

vtψt(s) ∀s ∈ Ω.

Proof. We have

∑
t∈Ω

vtψt(s)=
∑
t∈Ω

(
1

2�

∑
t′∈Ω

f(t′)ψt(t
′)

)
ψt(s)

=
1

2�

∑
t′∈Ω

f(t′)
∑
t∈Ω

ψt(t
′)ψt(s)

=
1

2�

∑
t′∈Ω

f(t′)
∑
t∈Ω

ψt′(t)ψs(t)

=
1

2�

∑
t′∈Ω

f(t′) 2� δt′,s

= f(s).

This proves our claim.

Corollary IV.4. The Walsh functions {ψt; t ∈ Ω} form a basis for the vector space

of real-valued functions on Ω.

Proof. The previous result shows that the ψt form a set of generators, so, it remains

to prove that they are linearly independent.
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Suppose that
∑

t∈Ω atψt = 0 for some at ∈ R, i.e., for all s ∈ Ω we have∑
t∈Ω

atψt(s) = 0.

Then, for any t′ ∈ Ω we have

0 =
∑
s∈Ω

(∑
t∈Ω

atψt(s)

)
ψt′(s) =

∑
t∈Ω

at

∑
s∈Ω

ψt(s)ψt′(s)

=
∑
t∈Ω

at 2
� δt,t′ = 2� at′ .

So, for any t′ ∈ Ω, we have at′ = 0, proving that the ψt are linearly independent

indeed.

1.3 The Walsh matrix

With notations as before, let us introduce the matrix

V = V � = (ψt(s))s,t∈Ω ∈ M2MM �(Z).

Note that this implies V to be symmetric.

The elements vt associated to an arbitrary function f : Ω → R may be collected

into a vector

v =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v0...0

...

v1...1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v0

...

v2�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ R2�

.

In a similar way, f yields a vector

f =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f(0 . . . 0)

...

f(1 . . . 1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f(0)

...

f(2� − 1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ R2�

.

These data are related through:

Proposition IV.5. With the above definitions, we have

f = V v.
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Proof. This is just a rewriting in matrix form of the fact that

f(s) =
∑
t∈Ω

vtψt(s) ∀s ∈ Ω.

The matrix V � is easy to calculate for small values of �. Indeed, we have

V 0 =(1),

V 1 =

(
1 1

1 −1

)
,

V 2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

as one easily verifies.

For arbitrary values of �, one may calculate V � by recursion:

Proposition IV.6. For any � ≥ 1, we have

V � =

(
V �−1 V �−1

V �−1 −V �−1

)
.

Proof. This is a straightforward consequence of the fact that for any s = s�−1ŝ, tˆ =

t�−1t̂ ∈ Ω, with ,̂ t̂ ∈ Ω�−1, we have

ψt(s) = (−1)s·t = (−1)s�−1t�−1(−1)ŝ·t̂

= (−1)s�−1t�−1ψt̂( )̂.

Note that (−1)s�−1t�−1 always has value +1, except when s�−1 = t�−1 = 1.

Corollary IV.7. For any positive integer �, we have

V 2
� = 2�I�.
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Proof. This may easily be proved by induction. Note that the result is obvious for

� = 1, so let us assume the statement to be correct up to � − 1. We then have:

V 2
� =

(
V �−1 V �−1

V �−1 −V �−1

)(
V �−1 V �−1

V �−1 −V �−1

)
=

(
2V 2

�−1 O�−1

O�−1 2V 2
�−1

)

=

(
2 · 2�−1I�−1 O�−1

O�−1 2 · 2�−1I�−1

)
= 2�

(
I�−1 O�−1

O�−1 I�−1

)
= 2�I�,

where O�−1 denotes the 2�−1-dimensional square matrix all of whose entries are zero.

Alternatively, the (s, t) entry of V 2
� is equal to∑

t′∈Ω�

ψt′(s)ψt(t
′) =

∑
t′∈Ω�

ψs(t
′)ψt(t

′) = 2� δs,t,

by lemma IV.1.

In practice, it is somewhat easier to work with a modified version of the matrix V �.

Indeed, if we introduce the Walsh matrix W � = 2−�/2V �, then we have

W 2
� = I�,

in view of the previous result. If we define for any f : Ω → R with associated vector

f ∈ R2�

,

w = W � f ,

then it is obvious that f (and hence f !) may be recovered from w by

f = W � w.

The components ws = ws(f) of the vector w are also called Walsh coefficients of f .

It follows that vs = 2−�/2ws for each s ∈ Ω.

In particular, the relation

f(s) =
∑
t∈Ω�

vtψt(s)

may be rewritten as

f(s) = 2−�/2
∑
t∈Ω�

wtψt(s).
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Note also that W � satisfies the recursion relation

W � = 2−
1
2

(
W �−1 W �−1

W �−1 −W �−1

)
,

in view of the analogous relation for V �.

2 Link with schema averages

Corollary IV.2, which states that

∑
s∈Ω

ψt(s) =

⎧⎨⎧⎧⎩⎨⎨2� if t = 0

0 if t �= 0�� ,

is sometimes referred to as the balanced sum theorem. Of course, this just says that

the sum of the elements in an arbitrary row (or column) of the matrix V � is 0,

except for the first one, where this sum has value 2�. This also holds for the matrix

W � but here, of course, the non-zero sum has value 2� · 2−�/2 = 2�/2.

Observe that in the above sum s takes values in the whole of Ω. One may wonder

what happens if one restricts s to a schema (section 4, chapter 1) H in Ω.

We will need some preliminaries and notations first.

Define functions α, β : {0, 1, #}� → {0, 1}� = Ω as follows. Let H = h�−1 . . . h0 be a

schema, i.e., an element of {0, 1, #}�. We then put

α(H)i =

⎧⎨⎧⎧⎩⎨⎨0 if hi = #

1 if hi = 0 or hi = 1,

β(H)i =

⎧⎨⎧⎧⎩⎨⎨0 if hi = # or hi = 0

1 if hi = 1.

For example, if H = #10#1, then α(H) = 01101 and β(H) = 01001.

Let

J(H) = {t ∈ Ω; ∀ 0 ≤ i < �, hi = # ⇒ ti = 0},
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i.e., J(H) is the set of all strings which have a 0 where H has a #. It is fairly easy

to see that

t ∈ J(H) ⇔ t ∧ α(H) = 0,

where for any s ∈ Ω, we denote by ¯ its binary complement. For example, if

s = 010011 then ¯ = 101100.

Denoting as before by |H| the cardinality of H (the number of strings “in” or

“satisfying” H), i.e., |H| = 2�−o(H), where o(H) denotes the order of H , we may

prove:

Theorem IV.8 (Balanced sum theorem for hyperplanes). For any schema

H and any t ∈ Ω, we have

∑
s∈H

ψt(s) =

⎧⎨⎧⎧⎩⎨⎨0 if t �∈�� J(H)

ψt(β(H))|H| if t ∈ J(H).

Note that if H = # . . .#, i.e., if H = Ω, then |H| = 2� and J(H) = {0 . . . 0} = {0}.
Moreover, β(H) = 0 . . . 0, so ψt(β(H)) = 1 for all t ∈ Ω. We thus recover the fact

that ∑
s∈Ω

ψt(s) =

⎧⎨⎧⎧⎩⎨⎨0 if t �= 0��
2� if t = 0.

To prove the theorem, we will need:

Lemma IV.9. For any s ∈ Ω and any hyperplane H, we have

s ∈ H ⇔ s ∧ α(H) = β(H).

Proof. Let us first assume s ∈ H . For each bit position i, we have to consider three

cases:

(a) hi = 0. Then α(H)i = 1 and as si = 0 as well, we have

(s ∧ α(H))i = 0 ∧ 1 = 0 = β(H)i.

(b) hi = 1. Then α(H)i = 1 and as si = 1 as well, we have

(s ∧ α(H))i = 1 ∧ 1 = 1 = β(H)i.
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(c) hi = #. Then α(H)i = 0, so

(s ∧ α(H))i = si ∧ 0 = 0 = β(H)i.

Conversely, if s ∧ α(H) = β(H), then we again consider three cases:

(a) hi = 0. Then α(H)i = 1 and β(H)i = 0. From s ∧ α(H) = β(H), it follows

that si ∧ 1 = 0, so si = 0.

(b) hi = 1. Then α(H)i = 1 and β(H)i = 1. In this case we have si ∧ 1 = 1, so

si = 1.

(c) hi = #. Then α(H)i = 0 and β(H)i = 0, so for all si we have si ∧ 0 = 0.

Proof. (of the theorem)

Case 1: t ∈ J(H), i.e., t ∧ α(H) = 0. Since for any s ∈ Ω, obviously,

s = (s ∧ α(H)) ⊕ (s ∧ α(H)) ,

we obtain that ∑
s∈H

ψt(s) =
∑
s∈H

ψt(s ∧ α(H)) ψt(s ∧ α(H)).

Now, by conjunction compression,

ψt(s ∧ α(H)) = ψt(s ∧ α(H) ∧ t) = ψt(0) = 1.

On the other hand, for each s ∈ H , we have ψt(s∧α(H)) = ψt(β(H)) thanks to the

previous lemma, so the above sum reduces to∑
s∈H

ψt(s ∧ α(H)) =
∑
s∈H

ψt(β(H)) = |H|ψt(β(H)).

Case 2: t �∈�� J(H), i.e., t ∧ α(H) �= 0. In this case, there exists some bit position��
i such that ti = 1 and i is not one of the fixed positions of H . For notational
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convenience, assume i = 0. In particular, we then have h0 = #. Any s ∈ Ω may be

written as s = ŝs0, with ˆ ∈ Ω�−1. Let t = t̂1, then∑
s∈H

ψt(s) =
∑
s∈H

(−1)ŝ·t̂(−1)s0.

Put H0HH = {s ∈ H ; s0 = 0} and H1 = {s ∈ H ; s0 = 1}. It is clear that H0HH and H1

correspond, bijectively, as ˆ0 ∈ H0HH ⇔ ŝ1 ∈ H1 since h0 = #. The above sum thus

reduces to ∑
s∈H

(−1)ŝ·t̂(−1)s0 =
∑
s∈H0

(−1)ŝ·t̂(−1)s0 +
∑
s∈H1

(−1)ŝ·t̂(−1)s0

=
∑
ŝ∈Ĥ

(−1)ŝ·t̂ −
∑
ŝ∈Ĥ

(−1)ŝ·t̂ = 0,

where Ĥ ∈ {0, 1, #}�−1 is defined by H = #Ĥ . This proves the assertion.

In section 3.2 of chapter VI, we prove the same theorem for strings over multary

alphabets (theorem VI.11). The proof of this more general theorem is much shorter

than the one shown here, which is based on Heckendorn and Whitley [33].

Corollary IV.10 (Hyperplane averaging theorem). The average of f over any

schema H is given by

f(H) =
1

|H|
∑
s∈H

f(s) =
∑

t∈J(H)

vtψt(β(H)).

Proof. We have

1

|H|
∑
s∈H

f(s) =
1

|H|
∑
s∈H

∑
t∈Ω�

vtψt(s) =
1

|H|
∑
t∈Ω�

vt

∑
s∈H

ψt(s).

By the previous result, the sum
∑

s∈H ψt(s) is only non-zero when t ∈ J(H), so,

f(H) =
1

|H|
∑

t∈J(H)

vt

∑
s∈H

ψt(s) =
1

|H|
∑

t∈J(H)

vtψt(β(H))|H|

=
∑

t∈J(H)

vtψt(β(H)).
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Note that the corollary may also be written as

f(H) = 2−�/2
∑

t∈J(H)

wtψt(β(H)).

Let us apply the foregoing to some concrete examples.

First, since β(# . . .#) = 0 and since # . . .# corresponds to the whole space Ω, we

recover

f(Ω) = f(# . . .#) = 2−�/2 w0,

i.e., w0 is essentially just the average of f .

Next, let us consider schemata of the form H = # . . .#a# . . . #, with a ∈ {0, 1} at

position i. In this case, for all t ∈ Ω, we find

ψt(β(H)) = (−1)a·ti ,

as β(H) = 0 . . . 0 a 0 . . . 0. If t ∈ J(H), then t is necessarily of the form t =

0 . . . 0 ti 0 . . . 0.

We distinguish two cases:

(i) If ti = 0 then t = 0, and we find

ψt(β(H)) = ψ0(β(H)) = 1.

(ii) If ti = 1 then t = 0 . . . 010 . . . 0 = 2i, and

ψt(β(H)) = ψ2i(β(H)) = (−1)a.

We may conclude

f(# . . .#a# . . .#) = 2−�/2 (w0 + (−1)aw2i) .

As another example, let us consider the schema H = #11. In this case, β(H) = 011

and t ∈ J(H) if t is of the form 0ab for some a, b ∈ {
t ψt(β(H))

000 = 0 +1

001 = 1 −1

010 = 2 −1

011 = 3 +1
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So,

f(H) = 2−3/2
∑

t∈J(H)

ψt(β(H))wt = 2−3/2(w0 − w1 − w2 + w3).

Note that the foregoing is a special case of a more general phenomenon:

Proposition IV.11. For any schema H over Ω, the average f(H) may be computed

using only those Walsh coefficients wt with u(t) ≤ o(H).

(Note: in the above example, o(H) = 2 and u(0) = 0, u(1) = u(2) = 1 and u(3) = 2,

respectively!)

Proof. Recall that

f(H) =
1

|H|
∑
s∈H

f(s) =
∑

t∈J(H)

vtψt(β(H)).

It now suffices to observe that t ∈ J(H) implies u(t) ≤ o(H). Indeed, if t ∈ J(H),

then hi = # implies ti = 0. So, ti = 1 implies hi �= #, hence��

u(t) ≤ |{i; hi �= #�� }| = o(H).

3 Link with partition coefficients

With any schema H ′ we want to associate a value ε(H ′), the partition coefficient of

H ′, such that for every schema H ,

f(H) =
∑

H′⊃H

ε(H ′),

where H ′ ⊃ H indicates H and H ′ agree on the fixed positions of H ′ (or otherwise

put, hi = # ⇒ h′
i = #). In particular, this will yield for every s ∈ Ω that

f(s) =
∑
s∈H

ε(H).
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From the very definition, it is clear that

ε(H) = f(H) −
∑

H′�H

ε(H ′),

so, the ε(H) may be calculated recursively. For example, we obviously have

ε(# . . .#) = f(Ω)

and

ε(# . . .#a# . . . #) = f(# . . .#a# . . .#) − ε(# . . .#)

= f(i,a) − f(Ω).

It thus appears that ε(# . . .#a# . . . #) “corrects” the approximation of f(i,a) by

f(Ω). Let us also point out that

ε(# . . .#) = f(Ω) = 2−�/2w0

and

ε(# . . .#a# . . .#) = f(i,a) − f(Ω) = 2−�/2 (w0 + (−1)aw2i) − 2−�/2w0

= (−1)a2−�/2w2i.

One may thus reasonably expect these ε(H) to be linked to Walsh coefficients.

Let us first give some easy extra examples, before formulating a general result.

Consider H = # . . .#

j
↓
0# . . .#

i
↓
1# . . .#. Clearly

J(H)= { 0 . . . 0a0 . . . 0b0 . . . 0; a, b ∈ {0, 1} }
= {0, 2i, 2j, 2j + 2i}.

Since β(H) = 0 . . . 000 . . . 010 . . . 0 = 2i, we find

ψ0(β(H))= ψ2j (β(H)) = 1,

ψ2i(β(H))= ψ2i+2j (β(H)) = −1,

3 Link with partition coefficients 133



and the general formula

f(H) = 2−�/2
∑

t∈J(H)

wtψt(β(H))

yields

f(H) = 2−�/2 (w0 − w2i + w2j − w2i+2j ) .

It follows that

ε(H)= f(H) − ε(# . . .#0# . . .### . . . #)

−ε(# . . .### . . .#1# . . .#)

−ε(# . . .#)

= 2−�/2 (w0 − w2i + w2j − w2i+2j ) − 2−�/2w2j − (−2−�/2w2i

)− 2−�/2w0.

We thus find

ε(# . . .#0# . . .#1# . . .#) = −2−�/2w2i+2j .

In a similar way, one obtains

ε(# . . .#0# . . .#0# . . .#)= 2−�/2w2i+2j ,

ε(# . . .#1# . . .#0# . . .#)=−2−�/2w2i+2j ,

ε(# . . .#1# . . .#1# . . .#)= 2−�/2w2i+2j .

Observe that in each of these examples

ε(H) = (−1)u(β(H))2−�/2wα(H).

Indeed, for example, with H = # . . .#0# . . .#1# . . .#, we have

α(H) = 0 . . . 010 . . . 010 . . . 0 = 2i + 2j

and

β(H) = 0 . . . 000 . . . 010 . . . 0 = 2i,

so, u(β(H)) = 1. We will see below that this phenomenon may be generalized. In

order to prove this, we need a few rather straightforward lemmas.
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Lemma IV.12. For any H ′, H ′′ ⊃ H, we have

H ′ �=�� H ′′ ⇔ α(H ′) �=�� α(H ′′).

Proof. Indeed, both H ′ and H ′′ arise from H by replacing some fixed positions in H

by #. The map α puts a 0 in the corresponding positions, and as there is at least

one different position where this occurs for H ′ and H ′′ when these are different, this

shows that then necessarily α(H ′) �=�� α(H ′′). The converse is obvious.

Lemma IV.13. If H ′ ⊃ H then α(H ′) ∈ J(H). Conversely, for any t ∈ J(H),

there exists exactly one H ′ ⊃ H with α(H ′) = t.

Proof. That H ′ ⊃ H implies α(H ′) ∈ J(H) is obvious. Indeed, at every locus i

where H has #, so does H ′, hence α(H ′)i = 0.

Conversely, for any t ∈ J(H), there exists exactly one H ′ ⊃ H with α(H ′) = t.

Obviously, H ′ is defined by

h′
i =

⎧⎨⎧⎧⎩⎨⎨# if ti = 0

1 if ti = 1,

as one easily checks.

Lemma IV.14. For any H ′ ⊃ H, we have

ψα(H′)(β(H)) = (−1)u(β(H′)).

Proof. Since, obviously, α(H ′) ∧ β(H) = β(H ′), we indeed have

ψα(H′)(β(H)) = (−1)u(α(H′)∧β(H)) = (−1)u(β(H′)).

We may now prove:

Theorem IV.15. For any schema H over Ω, we have

ε(H) = (−1)u(β(H))2−�/2wα(H).
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Proof. First note that the previous lemmas imply

f(H) = 2−�/2
∑

t∈J(H)

ψt(β(H))wt = 2−�/2
∑

H′⊃H

(−1)u(β(H′))wα(H′).

Since the result is obviously true for H = # . . .#, we may now argue by induction,

i.e., let us assume that

ε(H ′) = (−1)u(β(H′))2−�/2wα(H′),

for all H ′ � H . We then have

ε(H)= f(H) −
∑

H′�H

ε(H ′)

= 2−�/2
∑

H′⊃H

(−1)u(β(H′))wα(H′) −
∑

H′�H

(−1)u(β(H′))2−�/2wα(H′)

= (−1)u(β(H))2−�/2wα(H).

This proves the assertion.

Since for any schema H over Ω we have∑
t∈J(H)

ψt(β(H))wt =
∑

H′⊃H

(−1)u(β(H′))wα(H′),

it follows from the previous result that the decompositions

f(H) = 2−�/2
∑

t∈J(H)

ψt(β(H))wt

and

f(H) =
∑

H′⊃H

ε(H ′)

are essentially the same.

4 Link with epistasis

The aim of this section is to calculate the normalized epistasis of an arbitrary func-

tion f : Ω → R in terms of its Walsh coefficients. In order to realize this, let us first
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introduce the diagonal matrix D� ∈ M2MM �(Z), whose only non-zero diagonal entries

dii have value 1 and are situated at i = 0 and i = 2j, for 0 ≤ j < �. So,

D0 = (1) D1 =

(
1 0

0 1

)
D2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

D3 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

Lemma IV.16. With the above notations, and those of chapter II, we have

W �E�W � = D�.

Proof. Let us first prove that

W �U �W � = 2�

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

The statement is trivial for � = 0. Let us argue recursively and assume the statement

to be true up to � − 1. Then W �U �W � is equal to

2−1

(
W �−1 W �−1

W �−1 −W �−1

)(
U �−1 U �−1

U �−1 U �−1

)(
W �−1 W �−1

W �−1 −W �−1

)

and this is equal to

2

(
W �−1U �−1W �−1 O�−1

O�−1 O�−1

)
,
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which proves our claim. Finally, using the relation

G� =

(
G�−1 + U �−1 G�−1 − U �−1

G�−1 − U �−1 G�−1 + U �−1

)

and the previous remarks, it follows from E� = 2−�G� that

W �E�W � =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
W �−1E�−1W �−1 O�−1

1 0 . . . 0

O�−1 0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

Another straightforward induction argument finishes the proof.

In particular, the lemma confirms the result of proposition II.7:

rk(E�) = rk(G�) = � + 1.

We may now prove:

Proposition IV.17. If w0, . . . , w2�−1 are the Walsh coefficients of f : Ω → R, then

the normalized epistasis ε∗(f) of f is given by

ε∗(f) = 1 − w2
0 +

∑�−1
i=0 w2

2i∑2�−1
j=0 w2

j

.

Proof. Obviously,

tff = t (Ww) (Ww) = twtWWw = tww,

as W is symmetric and W 2 = I (we omit the index � in our notations).

On the other hand,

tfEf = twtWEWw = twWEWw = twDw.

We thus obtain

ε∗(f) = 1 −
tfEf
tff

= 1 −
twDw

tww
,

and this yields our claim, indeed.
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The previous result sheds new light on the meaning of the notion of epistasis. Indeed,

with notations as before, we know that w0 is the average of f and that the w2i are

the contributions of the schemata whose only non-# entry is on locus i, i.e., exactly

the linear contributions. The other Walsh coefficients correspond to schemata where

more than one locus is non-#, the non-linear contributions.

The above expression for ε∗(f) may thus be viewed as the ratio between (the sum

of the square of the) non-linear Walsh coefficients and the norm of the function.

We have seen in chapter II that the eigenspaces V �
0VV = {v ∈ R2�

; E�v = 0} and

V �
1VV = {v ∈ R2�

; E�v = v} corresponding to the eigenvalues 0 and 1 of E� have

dimensions 2� − �−1 and �+1, respectively. Therefore, for any v ∈ V �
0VV representing

a function f with Walsh coefficients w, we have that

W �E�W �W �v = 0,

and since W �v = w this obviously means that D�w = 0, or equivalently w0 = 0

and w2i = 0, 0 ≤ i < �.

As a direct consequence of the previous result, we have that ε∗(f) = 0. Moreover,

the vectors of the columns of the matrix W �, which are at positions j, with j �= 0�� , 2i

(0 ≤ i < �), form a basis for V �
0VV .

For any vector v ∈ V �
1VV , obviously D�w = w. It follows that wj = 0 for all j �= 0�� , 2i

(0 ≤ i < �) and a basis for V �
1VV is given by the vectors of the columns of W � situated

at positions j = 0, 2i, with 0 ≤ i < �, cf. the remarks following proposition II.7.

Proposition IV.18. For any “linear” map f : Ω → R we have ε∗(f) = 0.

Proof. Obviously, f is linear if and only if

f =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
a

a + b
...

a + (2� − 1)b

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

with a, b ∈ R. Since ε∗(f) = 1 − w2
0+

P�−1
i=0 w2

2iP2�−1
j=0 w2

j

, it suffices to check that wj = 0 for
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j �= 0�� , 2i, 0 ≤ i < �. Equivalently,

2�−1∑
k=0

(a + bk)ψj(k) = 0

for these values. Now,

2�−1∑
k=0

(a + bk)ψj(k) = a

2�−1∑
k=0

ψj(k) + b

2�−1∑
k=0

kψj(k).

To prove the assertion, it suffices to check that
∑2�−1

k=0 kψj(k) = 0, as
∑2�−1

k=0 ψj(k) = 0

by corollary IV.2.

Write k as k̂k0, j as ĵĵ0 with k̂, ĵ ∈ Ω�−1. Then∑
k∈Ω

k(−1)k·j =
∑
k∈Ω
k0=0

k(−1)k·j +
∑
k∈Ω
k0=1

k(−1)k·j

=
∑

k̂∈Ω�−1

2k̂(−1)2k̂·j +
∑

k̂∈Ω�−1

(2k̂ + 1)(−1)(2k̂+1)·j .

1. Case j0 = 0, i.e., j = 2ĵ.∑
k∈Ω

k(−1)k·j = 2
∑

k̂∈Ω�−1

k̂(−1)2k̂·2ĵ + 2
∑

k̂∈Ω�−1

k̂(−1)(2k̂+1)·2ĵ +
∑

k̂∈Ω�−1

(−1)(2k̂+1)·2ĵ

= 4
∑

k̂∈Ω�−1

k̂(−1)k̂·ĵ.

The result follows as ĵ �= 0�� , 2i, 0 ≤ i < � − 1, by induction.

2. Case j0 = 1, i.e., j = 2ĵ + 1.∑
k∈Ω

k(−1)k·j = 2
∑

k̂∈Ω�−1

k̂(−1)2k̂·(2 +̂1) + 2
∑

k̂∈Ω�−1

k̂(−1)(2k̂+1)·(2 +̂1)+

∑
k̂∈Ω�−1

(−1)(2k̂+1)·(2 +̂1)

= 2
∑

k̂∈Ω�−1

k̂(−1)k̂·ĵ − 2
∑

k̂∈Ω�−1

k̂(−1)k̂·ĵ = 0.
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5 Examples

5.1 Some first, easy examples

The needle-in-a-haystack function

Let us take f = needle(0), i.e., f(t) = δt,0 as defined in chapter I. In this case the

vector representation of f is

f =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

0
...

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Since ψ0(s) = 1 for all s ∈ Ω, obviously

w = W �f = 2−�/2

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,

i.e., ws = 2−�/2 for all s ∈ Ω. From this it trivially follows that

ε∗(needle(0))= 1 − w2
0 +

∑�−1
i=0 w2

2i

‖w‖2
= 1 − (� + 1)(2−�/2)2

2� (2−�/2)2

= 1 − � + 1

2�
,

as obtained in chapter II.

The camel function

Let us consider the function f = camel , defined by camel(0 . . . 0) = camel(1 . . . 1) =

1 and camel(t) = 0 for all other strings t ∈ Ω. Clearly

camel(s) = δ0...0,s + δ1...1,s = δ0,s + δ2�−1,s ,
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and the vector representation of f is

f =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

0
...

0

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

It follows from w = W �f that, for each s ∈ Ω, we have

ws = 2−�/2(ψ0...0(s) + ψ1...1(s)).

In particular,

w0 = 2−�/2(ψ0...0(0 . . . 0) + ψ1...1(0 . . . 0)) = 2 · 2−�/2

and

w2i = 2−�/2(ψ0...0(0 . . . 010 . . . 0) + ψ1...1(0 . . . 010 . . . 0))

= 2−�/2 (1 + (−1)) = 0.

So,

ε∗(camel) = 1 − w2
0 +

∑�−1
i=0 w2

2i

‖w‖2
= 1 − w2

0

‖f‖2
= 1 − (2 · 2−�/2)2

12 + 12

= 1 − 1

2�−1
.

Unitation functions

As a last easy example, let us reconsider unitation functions on Ω, and reconstruct

the results from chapter III, section 2.

With the same notations as in chapter III, we start from a function f on Ω such

that f(s) = h(u(s)), for some real-valued function h : {0, . . . , �} → R, where u(s)

— the unitation of s — is the Hamming distance between s and the zero-string.
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It is intuitively clear that the epistasis of f should then only depend upon the

function h, i.e., the components of the vector

h =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
h(0)

...

h(�)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

So, let us consider a unitation function f with associated function h, and let us

denote by w0, . . . , w2�−1 the Walsh coefficients of f . We know that the coefficient

w0 is, up to a factor, the average of f , i.e.,

w0 = 2�/2f(Ω) = 2−�/2
�∑

u=0

(
�

u

)
h(u).

On the other hand, using the notation

f(i,a) = f(# . . .#

i
↓
a# . . .#),

we know that the w2i may be given by

w2i = (−1)a
(
2�/2f(i,a) − w0

)
with a = 0

= 2�/2f(i,0) − 2�/2

(
1

2
f(i,0) +

1

2
f(i,1)

)
= 2�/2−1

(
f(i,0) − f(i,1)

)
= 2�/2−1

(
1

2�−1

�−1∑
u=0

[(
� − 1

u

)
h(u)

]
− 1

2�−1

�∑
u=1

[(
� − 1

u − 1

)
h(u)

])

= 2−�/2
�∑

u=0

[(
� − 1

u

)
−
(

� − 1

u − 1

)]
h(u).

Note that this result is independent of i. We thus find

ε∗(f) = 1 − w2
0 + �w2

1

‖w‖2
,

where

‖w‖2 = ‖f‖2 =

�∑
u=0

(
�

u

)
h2(u).
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Also note that the previous description of ε∗(f) coincides with that given in chapter

III. Indeed, a straightforward calculation shows that

ε∗(f) = 1 − 1

2�

∑�
p,q=0

(
�
p

)(
�
q

) (
1 + (�−2p)(�−2q)

�

)
h(p)h(q)

||f ||2

(the value of ε∗(f) given in theorem III.16) is equal to

ε∗(f) = 1 − 1

2�

(∑�
u=0

(
�
u

)
hu

)2

+ �
(∑�

u=0

((
�−1
u

)(
�−1
u−1

))
hu

)2

||f ||2

(the value of ε∗(f) obtained in the present section).

If we let

h(u) =

⎧⎨⎧⎧⎩⎨⎨1 if u = 0

0 if u �= 0�� ,

then needle(s) = h(u(s)). In this case, the above relations yield

w0 =2−�/2
�∑

u=0

(
�

u

)
h(u) = 2−�/2,

w2i =2−�/2

�∑
u=0

((
� − 1

u

)
−
(

� − 1

u − 1

))
h(u) = 2−�/2,

and we recover

ε∗(needle) = 1 − w2
0 + �w2

1

‖w‖2
= 1 − (� + 1)(2−�/2)2

1
= 1 − � + 1

2�
.

If we let

h(u) =

⎧⎨⎧⎧⎩⎨⎨1 if u = 0, �

0 if u �= 0�� , �

then camel(s) = h(u(s)). In this case, the above relations yield

w0 = 2−�/2
�∑

u=0

(
�

u

)
h(u) = 2−�/2 (1 · h(0) + 1 · h(�)) = 2 · 2−�/2,

w2i = 2−�/2

�∑
u=0

((
� − 1

u

)
−
(

� − 1

u − 1

))
h(u)

= 2−�/2 ((1 − 0)h(0) + (0 − 1)h(�)) = 0,
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and we recover

ε∗(camel) = 1 − w2
0

‖w‖2
= 1 − 4 · 2−�

2
= 1 − 1

2�−1
.

5.2 A more complicated example: template functions

In this section we show how the use of Walsh transforms permits an easy calculation

of the epistasis of the “template functions”. We invite the reader to compare it with

the set-up of chapter III.

As we saw in the previous chapter, the template functions T n
�TT calculate the fitness

of a string of length �, by sliding a fixed string t of length n ≤ � (the template) over

it.

As always, let us denote by T n
� the vector corresponding to the function T n

�TT .

In order to calculate the epistasis of this type of functions by applying propos-

ition IV.17, and taking into account the value of ‖T n
� ‖2 derived in the previous

chapter, it only remains to calculate

w2
0 +

�−1∑
i=0

w2
2i.

First of all, let us note that it will be easier to work with vn
� = V �T

n
� and vn

�,j = (vn
� )j

(for j = 0, . . . , 2� − 1), so it is clear that wn
� = 2−�/2vn

� .

Let us first consider the case n = �. To simplify, let us write v� = v�
�. We have

v� = V �T
�
� = V �

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0
...

0

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
(−1)u(0)

...

(−1)u(2�−1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

where u(i) denotes the unitation of the binary representation of i. So (v�)0 = 1 and

(v�)2i = −1, for all i = 0, . . . , � − 1. As ||T �
�||2 = 1, we find that

ε∗(T �
�) = 1 − 1 + �

2�
,

in accordance with the calculations in chapter III.
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More generally, let us now assume n < �. Recall that

T n
� =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
T n

�TT (00 . . . 0)
...

T n
�TT (11 . . . 1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

(
T n

�−1

T n
�−1 + Dn

�−1

)
=

(
T n

�−1

T n
�−1

)
+ Dn+1

�

with

Dn+1
� =

(
0�−1

Dn
�−1

)
.

Using this, we obtain

vn
� =V �

((
T n

�−1

T n
�−1

)
+ Dn+1

�

)

=

(
V �−1 V �−1

V �−1 −V �−1

)((
T n

�−1

T n
�−1

)
+ Dn+1

�

)
= 2

(
vn

�−1

0�−1

)
+ dn+1

� ,

where dn
� = V �D

n
� .

So,

vn
� = 2

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜2

(
vn

�−2

0�−2

)
+ dn+1

�−1

0�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟+ dn+1
�

= 4

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−2

0�−2

0�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ + 2

(
dn+1

�−1

0�−1

)
+ dn+1

�

= 8

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
v�−3

0�−3

0�−2

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ + 4

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
dn+1

�−2

0�−2

0�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟+ 2

(
dn+1

�−1

0�−1

)
+ dn+1

�

...

= 2�−n

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
vn

0n

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+ 2�−n−1

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
dn+1

n+1

0n+1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+ · · · + 2

(
dn+1

�−1

0�−1

)
+ dn+1

� .

Chapter IV. Walsh transforms146



We may write the above formula in a more elegant way using the Kronecker product

(defined in section 1.1 of appendix B). In fact, to calculate d n+1
i for i = n+1, . . . , �,

first note that

dn
� = V �D

n
� =

(
V �−1 V �−1

V �−1 −V �−1

)
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0�−1

0�−2

...

0�−n+1

u�−n+1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

=

(
V �−1D

n−1
�−1

−V �−1D
n−1
�−1

)
=

(
dn−1

�−1

−dn−1
�−1

)

=

(
1

−1

)
⊗ dn−1

�−1 = v1 ⊗ dn−1
�−1 .

Similarly, if we write vi = v⊗i
1 , for any i we have d n

� = vi ⊗ dn−i
�−i . Taking i = n− 1,

we can write

dn+1
� = vn−1 ⊗ d 2

�−n+1 = vn−1 ⊗ V �−n+1

(
0�−n

u�−n

)

= vn−1 ⊗
(

V �−nu�−n

−V �−nu�−n

)
= vn−1 ⊗ v1 ⊗ V �−nu�−n

= vn ⊗ 2�−nh�−n

where

h� =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

0
...

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ∈ R2�

for all � ∈ N. In a similar way,

dn+1
i = 2i−nvn ⊗ hi−n
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for i = n + 1, . . . , �. We thus obtain

vn
� = 2�−n

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
vn

0n

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+
�∑

i=n+1

2�−i

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
dn+1

i

0i

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= 2�−n

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

vn

0n

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟+

�∑
i=n+1

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
vn ⊗ hi−n

0i

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= 2�−n

(
h�−n ⊗ vn +

�∑
i=n+1

h�−i ⊗ vn ⊗ hi−n

)

= 2�−n
�−n∑
i=0

h⊗i
1 ⊗ vn ⊗ h⊗�−n−i

1 .

(Note that hi = h⊗i
1 with h⊗0

1 = 1.)

As we have mentioned before, we are only interested in the value of vn
�,0 and vn

�,2i for

i = 0, . . . , � − 1. For the first one, it is clear that

vn
�,0 = 2�−n(� − n + 1)

since (hj ⊗ vn ⊗ h�−n−j)0 = 1 for all j.

Now, in order to deduce a general formula for the second case, let us first consider

two examples, one for the case n < � ≤ 2n and another one for the case 2n ≤ �.

Example 1. We assume that � = 7 and n = 5.

First, note that

v5
7 = 22

2∑
j=0

hj ⊗ v5 ⊗ h2−j = 4(h0 ⊗ v5 ⊗ h2 + h1 ⊗ v5 ⊗ h1 + h2 ⊗ v5 ⊗ h0).

It should be clear that

v5
7,1 = v5

7,64 = −22

v5
7,2 = v5

7,32 = −222

v5
7,4 = v5

7,8 = v5
7,16 = −223.
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We need to distinguish three cases:

1. If 0 ≤ i < � − n, the non-zero summands are hj ⊗ vn ⊗ h�−n−j with

j = � − n − i, . . . , � − n.

2. If � − n ≤ i < n, the non-zero summands are hj ⊗ vn ⊗ h�−n−j with

j = 0, . . . , � − n.

3. If n ≤ i < �, the non-zero summands are hj ⊗ vn ⊗ h�−n−j with n + � −
n − j > i, so j = 0, . . . , � − i − 1.

Example 2. We assume that � = 7 and n = 2.

As

v2
7 = 25

5∑
j=0

hj ⊗ v2 ⊗ h5−j = 32(h0 ⊗ v2 ⊗ h5 + h1 ⊗ v2 ⊗ h4

+ h2 ⊗ v2 ⊗ h3 + h3 ⊗ v2 ⊗ h2 + h4 ⊗ v2 ⊗ h1 + h5 ⊗ v2 ⊗ h0),

it follows that
v2
7,1 = v2

7,64 = −25

v2
7,2 = v2

7,4 = v2
7,8 = v2

7,16 = v2
7,32 = −252.

Again, we can distinguish three cases:

1. If 0 ≤ i ≤ n − 1, the non-zero summands are hj ⊗ vn ⊗ h�−n−j with

j = � − n − i, . . . , � − n.

2. If n ≤ i ≤ � − n, the non-zero summands are hj ⊗ vn ⊗ h�−n−j with

j = � − i − n, . . . , � − i − 1.

3. If � − n ≤ i ≤ � − 1, the non-zero summands are hj ⊗ vn ⊗ h�−n−j with

n + � − n − j > i, so j = 0, . . . , � − i − 1.

The general case works similarly, so we obtain:

1. if n < � ≤ 2n and i = 0, . . . , � − 1,

vn
�,2i =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
−2�−n(i + 1) if 0 ≤ i < � − n

−2�−n(� − n + 1) if � − n ≤ i < n

−2�−n(� − i) if n ≤ i ≤ � − 1,
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2. if 2n ≤ � and i = 0, . . . , � − 1,

vn
�,2i =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
−2�−n(i + 1) if 0 ≤ i ≤ n − 1

−2�−nn if n ≤ i ≤ � − n

−2�−n(� − i) if � − n ≤ i ≤ � − 1.

In the first case, we have

(vn
�,0)

2 +
∑�−1

i=0(v
n
�,2i)2 = 4�−n{(� − n + 1)2 + 2

∑�−n
i=0 i2 + (2n − �)(� − n + 1)2} =

= 4�−n{(� − n + 1)2(2n − � + 1) + 1
3
(� − n)(� − n + 1)(2� − 2n + 1)}

= 4�−n{1 + n(� − n + 1)2 + �−n
3

(4 − (� − n)2)}.

Similarly, in the second case,

(vn
�,0)

2 +
∑�−1

i=0(v
n
�,2i)2 = 4�−n{(� − n + 1)2 + 2

∑n
i=0 i2 + (� − 2n)n2}

= 4�−n{(� − n + 1)2 + 1
3
n(n + 1)(2n + 1) + (� − 2n)n2}

= 4�−n{(� − 2n)(n2 + � + 2) + n
3
(2n2 + 7) + 2n2 + 1}.

Finally, the combination of all of the previous results with the value of the norm of

T n
� and proposition IV.17 yields:

Theorem IV.19. The epistasis of the template function T n
�TT is:

ε∗(T n
�TT ) =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪
1 − 1+n(�−n+1)2+ (�−n)

3 (4−(�−n)2)
2n(3(�−n)−1+2n−�+1)

if n ≤ � ≤ 2n

1 − (�−2n)(n2+�+2)+ n
3
(2n2+7)+2n2+1

2n(3(�−n)−1)+(�−2n)2+2(n+1)−�
if 2n ≤ �.

Proof. Note that

w2
0 +

�−1∑
i=0

w2
2i = 2−�

(
(vn

�,0)
2 +

�−1∑
i=0

(vn
�,2i)2

)

and
2�−1∑
j=0

w2
j = ‖T n

� ‖2.
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6 Minimal epistasis and Walsh coefficients

Let us use notations as before. In view of the fact that

ε∗(f) = 1 − w2
0 +

∑�−1
i=0 w2

2i∑2�−1
j=0 w2

j

,

it is clear that the minimal value ε∗(f) = 0 will be reached exactly by functions

f : Ω → R with

w2
0 +

�−1∑
i=0

w2
2i =

2�−1∑
j=0

w2
j ,

i.e., whose only non-zero Walsh coefficients are w0 and w2i for 0 ≤ i < �. It appears

that these are exactly the first order functions ((I.3), page 46), i.e., those f : Ω → R

which have the property that there exist

gi : {0, 1} → R

such that

f(s) =

�−1∑
i=0

gi(si)

for all s = s�−1 . . . s0 ∈ Ω. To prove this, we will need some preparations first.

Let us denote gi(a) by gi,a. It is easy to see that the average of f is given by

v0 =
1

2�

∑
s∈Ω

f(s) =
1

2�

∑
s∈Ω

�−1∑
i=0

gi,si
=

1

2

�−1∑
i=0

(gi,0 + gi,1) .

On the other hand, for any 0 ≤ j < �, we have

v2j = f(# . . .#

j
↓
0# . . .#) − v0

=
1

2

∑
0≤i<�
i	=		 j

(gi,0 + gi,1) + gj,g 0 − 1

2

∑
0≤i<�

(gi,0 + gi,1)

= gj,g 0 − 1

2
(gj,g 0 + gj,g 1)

=
1

2
gj,g 0 − 1

2
gj,g 1.
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As we pointed out before, vj corresponds to the schema H , with 0 in the loci where

a 1 occurs in the binary representation of j and a # in the other loci. We will denote

this correspondence by j ∼ H .

Example IV.20. If � = 5, then v13 corresponds to H = #00#0, as the binary

representation of 13 is 01101. So, 13 ∼ #00#0.

In particular, the coefficients v2i correspond to the schemata # . . .#0# . . .#, with

0 in the i-th locus. We may now prove:

Lemma IV.21. If f is a first order function, then vt = 0 for all t �= 0�� , 2j, 0 ≤ j < �.

Proof. Let t �= 0�� , 2j and let H be the schema corresponding to t, i.e., t ∼ H with 0

at all defined loci. Let k = o(H).

Let us first assume k = 2. If the non-# entries are situated at the loci j1 and j2,

then

vt = f(H) − v2j1 − v2j2 − v0

=
1

2

∑
0≤i≤�−1
i	=		 j1,j2

(gi,0 + gi,1) + gjg 1,0 + gjg 2,0

−1

2
gjg 1,0 +

1

2
gjg 1,1 − 1

2
gjg 2,0 +

1

2
gjg 2,1 − 1

2

∑
0≤i<�

(gi,0 + gi,1)

= 0.

In order to apply induction, let us now assume the result to be correct for all H

with o(H) < k. Then, denoting by A(H) the set of non-# loci of H ,

vt = f(H) − v0 −
∑

j∈A(H)

v2j ,

as the other components vanish in view of the induction hypothesis. So,

vt =
1

2

∑
0≤i<�
i	∈		 A(H)

(gi,0 + gi,1) +
∑

j∈A(H)

gj,g 0

−1

2

∑
j∈A(H)

(gi,0 − gi,1) − 1

2

∑
0≤i<�

(gi,0 + gi,1)

= 0.

This proves the assertion.
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Since the Walsh coefficients wt are multiples of the corresponding vt, this already

proves that every first order function f has the property that ε∗(f) = 0.

The converse is also true. Indeed, if ε∗(f) = 0 for some f : Ω → R, then we have

already seen that all Walsh coefficients wt vanish for t �= 0�� , 2j. We then find

f(s)= (W �w)s = 2−
�
2 (V �w)s = 2−

�
2

∑
r∈Ω

(−1)r·swr

=2−
�
2 w0 + 2−

�
2

�−1∑
i=0

(−1)siw2i

=

�−1∑
i=0

gi(si),

where gi is given as

gi : {0, 1} → R : a �→�� 2− �
2

(
1

�
w0 + (−1)aw2i

)
.

It follows that f is a first order function, indeed. We thus have proved:

Theorem IV.22. For any f : Ω → R, the following assertions are equivalent:

1. ε∗(f) = 0;

2. f is a first order function.

In particular, it appears that proposition IV.18 is a straightforward consequence of

this result.
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Chapter V

Multary epistasis

This chapter extends the epistasis theory of the previous chapters to multary rep-

resentations — fixed-length string encodings where the alphabet contains more than

two symbols. Our motivation is twofold. From a mathematical point of view, the

extension is natural and can be carried out without too many complications. GA

practitioners, on the other hand, are used to multary encodings since the majority

of real world search problems are best encoded in a non-binary way.

We briefly discuss the implications of abandoning Ω = {0, 1}� in the first section

of this chapter. We extend the definition and formulation of normalized epistasis

to multary strings in the second section, and compute its extreme values in the

third section. We finish the chapter by writing out, as an example, the epistasis of

(generalized) unitation functions.

1 Multary representations

Let us use the well known traveling salesman problem (TSP) as a first example

of a search problem where a non-binary representation is much more natural than

any binary one. The problem is defined as follows: given a fixed number of cities,

conveniently labeled 1, 2, 3, . . . , n and distances between each pair of cities, find

the shortest tour allowing the traveling salesman to visit each city exactly once.

The obvious representation for this problem is the space of permutations of the set
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{1, . . . , n}, as each permutation accords to exactly one possible tour for the salesman.

We write the permutation as a string of symbols, where each symbol occurs exactly

once. It is not too difficult to think of a way of encoding a permutation as a binary

string; suppose we choose the following one: we set � = n�log n�1, and use the first

�log n� bits as an indication for the first city visited, the next �log n� bits for the

second city, and so on. Note that this is a valid representation, as each possible tour

(individual) can be represented as a binary string of length �. It is also similar to

the representation that will be implicitly used by the computer when we store or

manipulate a permutation, the only difference is that the �log n� will probably be

replaced by a multiple of 8.

The difference between the two encodings does not lie in the actual way of writing or

storing the individuals, but in the way the genetic operators, mutation and crossover,

manipulate them. A mutation in permutation space is a small modification to a

permutation which yields another permutation (think of swapping the order of two

adjacent cities, for example). A mutation in binary string space typically amounts

to the flipping of one or a few bits; the result is, of course, another bit string. But

in the case of our binary representation of the TSP problem, this new string may

not be a valid permutation anymore. Two constraints may be violated. If n is not a

power of 2, then 2�log n� > n, and the mutation may have resulted in a string with a

non-existing city at a given position. Or, when the result is a different city indeed,

this city may occur at a different position already. It is easy to see that none of

the classical crossover operators can guarantee that these two constraints are never

violated.

A second example illustrating a different issue is that of encoding a real or integer

valued domain in the space of bit strings. The interval [0, 1], for example, can be

represented by length � binary strings if we accept a finite precision. In the standard

way of encoding numbers to bit strings, a mutation of the most significant bit implies

a much larger jump in [0, 1] than a mutation of the least significant bit does. As

these mutations typically occur with equal probability, the mutation operator is very

different from the more natural Gaussian noise which would normally be applied to

1As before, we use the notation �x� for the smallest integer greater than or equal to x.
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2 Epistasis in the multary case

make a small modification to a real number. The difference between the encodings

is again thinking of the number as a real number, and not as a sequence of bits.

Let us give another example of this second “compatibility” issue between represent-

ation and operators. If a variable takes 4 values, is it best to use two bits to encode

it, or should we better use a multary encoding with an alphabet of size 4 for this

variable? In the former case, using the classical operators, 01 = 1 and 10 = 3 are

one mutation away from 00 = 0, while 11 = 4 is further away from 00 = 0. In the

latter case, again with the traditional “change to another value, all choices being

equal”, this is obviously not the case. It depends on the application to decide which

choice is best, but the two choices will result in different GA behavior.

There are, of course, many other issues that make a successful combination of rep-

resentation and genetic operators, but they do not relate directly to the difference

between binary and multary encodings. In practice, multary encodings often arise

as a more natural choice than binary ones. The best known example of a multary

encoding is of course the DNA encoding, which consists of (variable length) strings

over the 4-symbol alphabet {A, C, G, T}. Three of these nucleotides encode for one

amino acid. Because the number of different amino acids (20 frequently occurring,

and a few rare ones) is smaller than 43 = 64, there is room for redundancy: some

amino acids are represented by more than one triplet. Searching in amino acid se-

quence space (i.e., protein space), however, is best done with a 20-valued alphabet,

with a very specific mutation operator that, for example, takes the frequency of

occurring of amino acids into account.

2 Epistasis in the multary case

In view of the previous considerations, it is necessary to reconsider some topics dealt

with in the literature and in the previous chapters. In particular, in chapter II, we

introduced the matrices E� and G� and applied them to calculate the normalized

epistasis of a fitness function f on Ω = {0, 1}� as

ε∗(f) = 1 −
tfE�f

tff
.
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In order to study a similar notion in the multary case, throughout this chapter,

we will fix positive integers n and �, and we will work over a fixed alphabet Σ of

cardinality n, which we will usually identify with the set of integers {0, 1, . . . , n−1}.
The set Σ� of length � strings s = s�−1 . . . s0 over Σ will be denoted by Ωn.

2.1 The epistasis value of a function

We start by introducing the notion of epistasis value ε2(f) for a fitness function f

acting on strings over a not necessarily binary alphabet.

Following ideas used in the binary case, we will only be working with the full search

space Ωn, so |Ωn| = n�. Arguing as in the binary case, the global epistasis of s ∈ Ωn

may be given by

ε(s) ≡ εΩn
(s) = f(s) − 1

n�−1

�−1∑
i=0

∑
t∈Ωn(i,si)

f(t) +
� − 1

n�

∑
t∈Ωn

f(t),

where Ωn (i, si) consists of all strings in Ωn which have value si at position i. The

epistasis value of f is then defined to be

ε2(f) ≡ ε2
Ωn

(f) =
∑
s∈Ωn

ε2(s).

2.2 Matrix representation

Mimicking the binary case, we will show that the previous definition may be rewrit-

ten more elegantly in matrix form. In order to realize this, we first introduce analogs

of the matrices E� and G�, defined for the binary case in section 3.1 of chapter II.

The matrix Gn,� and its basic properties

For any 0 ≤ i, j < n�, we will denote by dij (or dn,�
ij , if ambiguity may arise) the

Hamming distance between the (length �) n-ary representation of i and j. For ex-

ample, since the ternary representation of 23 and 47 are 0212 and 1202, respectively,

we have d3,4
23,47 = 2.
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2 Epistasis in the multary case

We define the matrix Gn,� = (gn,�
ij ) by letting gn,�

ij = (n − 1)� + 1 − ndn,�
ij for every

0 ≤ i, j < n�. If no ambiguity arises, we will use the same notation as in the binary

case, i.e., we will just write G� and g�
ij for Gn,� and gn,�

ij , respectively. We will also

use the matrix En,� = n−�Gn,�, with rational entries.

Let us consider the vectors ε = t(ε(0), . . . , ε(n� −1)) and f = t(f0ff , . . . , fnff �−1), where

we write ε(n� − 1) for ε((n − 1) . . . (n − 1)) and fnff �−1 for f((n − 1) . . . (n − 1)).

A similar reasoning to the one used in the binary representation easily shows that

ε = f − En,�f . We thus obtain that the epistasis value of f is given by

ε2(f) = ||ε||2 = ||f − En,�f ||2.

The following result allows G� to be calculated recursively:

Lemma V.1. For any positive integer �, we have:

G� =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
G�−1 + (n − 1)U �−1 G�−1 − U �−1 . . . G�−1 − U �−1

G�−1 − U �−1 G�−1 + (n − 1)U �−1 . . . G�−1 − U �−1

...
...

. . .
...

G�−1 − U �−1 G�−1 − U �−1 . . . G�−1 + (n − 1)U �−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

where, for any positive integer k, the nk-dimensional matrix U k is given by

U k =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1 . . . 1
...
. . .

...

1 . . . 1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

Proof. The length � words over the alphabet Σ = {0, 1, . . . , n− 1}, with cardinality

n, may be subdivided into n subclasses, each of these determined by the value at

position �. This subdivision allows us to view the matrix G� as composed of n2

submatrices Gpq, say

G� =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
G0,0 . . . G0,n−1

...
. . .

...

Gn−1,0 . . . Gn−1,n−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,

with Gpq = (gn,�
ij ), where i and j vary through the elements in Ωn = Σ� with values

p and q at bit-position �, respectively.
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For any pair of strings i and j of length �, we will denote by dn,�−1
ij (or just d�−1

ij

if no ambiguity arises) the Hamming distance between the (length � − 1) strings

obtained from the previous ones by eliminating the �-th position. For example,

since the ternary representation of 23 and 47 are 0212 and 1202, respectively, we

have d3,4
23,47 = 2, while d3,3

23,47 = 1.

For every 0 ≤ p < n, we have Gpp = G�−1 + (n − 1)U �−1. Indeed,

Gpp = (g�
ij) = ((n − 1)� + 1 − nd�

ij)

= ((n − 1)(� − 1) + 1 − nd�
ij + (n − 1))

= ((n − 1)(� − 1) + 1 − nd�−1
ij + (n − 1))

= G�−1 + (n − 1)U �−1,

since, in this case, we always have d�
ij = d�−1

ij .

Outside of the diagonal, i.e., with 0 ≤ p �=�� q < n, we have

Gp,q =(g�
ij) = ((n − 1)� + 1 − nd�

ij)

= ((n − 1)(� − 1) + 1 − nd�
ij + (n − 1))

= ((n − 1)(� − 1) + 1 − n(d�−1
ij + 1) + (n − 1))

=G�−1 − U �−1,

since, in this case, we always have d�
ij = d�−1

ij + 1. This finishes the proof.

Using this result, it is easy to check that the recursion relation

G� = U �−m ⊗ Gm + (G�−m − U �−m) ⊗ Um,

valid for any pair of positive integers m ≤ n by lemma II.3, remains valid in the

multary case.

As a consequence, let us mention:

Corollary V.2. For any positive integer �, we have G2
� = n�G�.

Proof. The statement obviously holds true for � = 0 and � = 1, where G0 =

(1) and G1 = nIn, respectively (In denoting the n-dimensional identity matrix).

Using the previous result, the general case follows from a straightforward induction

argument.
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2 Epistasis in the multary case

Eigenvalues and eigenspaces

It is easy to see that the last result implies that the eigenvalues of G� are 0 and n�.

Indeed, as G� is a symmetric real matrix, its eigenvalues are real (proposition B.38).

On the other hand, if v is an eigenvector of G� with eigenvalue λ, i.e., G�v = λv,

then

n�λv = n�G�v = G2
�v = λ2v.

So, λ = 0 or λ = n�, as we claimed.

From the previous corollary and the identity G� = n�E�, it clearly follows:

Corollary V.3. For any positive integer �, the matrix E� is idempotent. In partic-

ular, E� has eigenvalues 0 and 1.

Just as in the binary case, we now define the normalized epistasis ε∗(f) ≡ ε∗n,�(f) of

a given fitness function f over Ωn as

ε∗(f) = ε2

(
f

‖f‖
)

=
ε2(f)

‖f‖2
=

tf (I� − En,�) f
tff

= cos2 (f , F n,�f ) ,

where F n,� = I� −En,� is an orthogonal projection (being idempotent and symmet-

ric). In particular, it follows that 0 ≤ ε∗(f) ≤ 1 for any function f .

In order to characterize the functions with maximal and minimal normalized epi-

stasis, we will determine the eigenspaces of G� (and E�). As a first step, let us

calculate the rank of G�.

Lemma V.4. For any positive integer �, we have

rk(G�) = (n − 1)� + 1.

Proof. Let us argue by induction on �. The assertion holds true for � = 1. On the

other hand, applying lemma V.1, elementary row and column operations reduce G�

to the form ⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
nG�−1 0 . . . 0

0 U �−1 . . . 0
...

...
. . .

...

0 0 . . . U �−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .
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This yields that

rk(G�) = rk(G�−1) + (n − 1)rk(U �−1)

= ((n − 1)(� − 1) + 1) + (n − 1) = (n − 1)� + 1,

which proves the assertion.

With the same notations as chapter II, let us now denote by V �
0VV and V �

1VV the ei-

genspaces in Rn�

corresponding to the eigenvalues 0 and n� of G�, respectively (or,

equivalently, the eigenvalues 0 and 1 of E�). Then Rn�

= V �
0VV ⊕V �

1VV and, as E� is idem-

potent, Rn�

= Ker(E�) ⊕ Im(E�) (proposition B.25) with Ker(E�) = V �
0VV . On the

other hand, Im(E�) ⊆ V �
1VV . Indeed, if x ∈ Im(E�), then there exists some y ∈ Rn�

with x = E�y and so, as

E�x = E2
�y = E�y = x,

obviously, x ∈ V �
1VV .

Finally, as dim(Im(E�)) = dim(V �
1VV ), we obtain that Im(E�) = V �

1VV . Now, the previous

result yields that

dim(V �
0VV ) = n� − (n − 1)� − 1

and

dim(V �
1VV ) = (n − 1)� + 1.

An explicit orthogonal basis for V �
1VV may be constructed as follows. Start from v0

0 = 1

and suppose we already constructed a subset

{v�−1
0 , . . . , v�−1

(n−1)(�−1)} ⊆ Rn�−1

.

We construct a new subset

{v�
0, . . . , v

�
(n−1)�} ⊆ Rn�

,

where

v�
k =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1

k
...

v�−1
k

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
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for all 0 ≤ k ≤ (n − 1)(� − 1) and where v�
(n−1)(�−1)+1, v

�
(n−1)(�−1)+2, . . . , v

�
(n−1)� are

given by ⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

u�−1

−u�−1

0�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

u�−1

u�−1

−2u�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, . . . ,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

u�−1

u�−1

...

u�−1

u�−1

−(n − 1)u�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

with, as before,

u�−1 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1
...

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ , 0�−1 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
0
...

0

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
within Rn�−1

.

As an example, if n = 3 and � = 1, then

v1
0 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1

1

1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ , v1
1 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1

−1

0

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ , v1
2 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1

1

−2

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,

so, for n = 3 and � = 2, we obtain

v2
0 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

1

1

1

1

1

1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, v2

1 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

−1

0

1

−1

0

1

−1

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, v2

2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

−2

1

1

−2

1

1

−2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, v2

3 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

1

−1

−1

−1

0

0

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, v2

4 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

1

1

1

1

−2

−2

−2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

We may now prove:
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Chapter V. Multary epistasis

Proposition V.5. With the previous notations, for every positive integer �, the set

{v�
0, . . . , v

�
(n−1)�}

is an orthogonal basis for V �
1VV .

Proof. For � = 0, the statement is obvious. Suppose the assertion holds true for

strings of length 0, . . . , �−1 and let us prove it for strings of length �. In this case, if

0 ≤ k �=�� k′ ≤ (n − 1)(� − 1), then the induction hypothesis implies that tv�
kv

�
k′ = 0.

On the other hand, if

0 ≤ k ≤ (n − 1)(� − 1) < k′ ≤ (n − 1)�,

then

tv�
kv

�
k′ = (tv�−1

k , . . . , tv�−1
k )

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

u�−1

...

u�−1

−iu�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= i tv�−1

k u�−1 − i tv�−1
k u�−1 = 0,

with i = k′ − (n − 1)(� − 1). Finally, if (n − 1)(� − 1) + 1 ≤ k �=�� k′ ≤ (n − 1)�,

tv�
kv

�
k′ = (tu�−1, . . . ,

tu�−1,−i tu�−1,
t0�−1, . . . ,

t0�−1)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

u�−1

...

u�−1

−ju�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= 0,

with i = k − (n − 1)(� − 1) and j = k′ − (n − 1)(� − 1).

Since the vectors v�
0, . . . , v

�
(n−1)� are obviously linearly independent, it thus suffices

to verify that they belong to V �
1VV , as we have seen that dim(V �

1VV ) = (n − 1)� + 1.
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Let us again argue by induction on �. For � = 0, the statement is obvious, so let

us assume it to hold true for length 0, . . . , � − 1 and prove it for length �. First, if

0 ≤ k ≤ (n − 1)(� − 1), then

G�v
�
k =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
G�−1 + (n − 1)U �−1 . . . G�−1 − U �−1

...
. . .

...

G�−1 − U �−1 . . . G�−1 + (n − 1)U �−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

v�−1
k
...

v�−1
k

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

=

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
nG�−1v

�−1
k

...

nG�−1v
�−1
k

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

= n.n�−1

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1

k
...

v�−1
k

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
= n�v�

k.

On the other hand, if k = (n − 1)(� − 1) + i with 1 ≤ i ≤ n − 1, then

G�v
�
k =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
G�−1 + (n − 1)U �−1 . . . G�−1 − U �−1

...
. . .

...

G�−1 − U �−1 . . . G�−1 + (n − 1)U �−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

u�−1

...

u�−1

−iu�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

=n

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

U �−1u�−1

...

U �−1u�−1

−iU �−1u�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= n.n�−1

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

u�−1

...

u�−1

−iu�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= n�v�

k.

This finishes the proof.
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We already pointed out that 0 ≤ ε∗n,�(f) ≤ 1 for any fitness function f . From the

previous remarks, it is now clear that ε∗(f) = 0 and ε∗(f) = 1 exactly when f ∈ V �
1VV

and f ∈ V �
0VV , respectively. As an example, if n = 3 and � = 2, it thus follows that

f ∈ V �
1VV if and only if it belongs to the vector space generated by the vectors⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

1

1

1

1

1

1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

−1

0

1

−1

0

1

−1

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

−2

1

1

−2

1

1

−2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

1

−1

−1

−1

0

0

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1

1

1

1

1

1

−2

−2

−2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

This is easily seen to be equivalent to

f01ff + f02ff + f10 + f12 + f20ff + f21ff = 2(f00ff + f11 + f22ff ).

2.3 Comparing epistasis

In this section we present two simple fitness functions and encode them on both

binary and multary strings. We show that the normalized epistasis of the multary

version is lower than that of the binary one.

The function that we consider first is given by

f(s) =

⎧⎪⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪
1 − 1

2� u(s) = 0

1 − 1+u(s)
�

0 < u(s) < �

1 u(s) = �,

where s ∈ Ω2 = {0, 1}� and u(s) denotes, as usual, the number of bits in s with

value 1. Fixing the length � = 4, it easily follows that the associated vector f is

tf =

(
15

16
,
1

2
,
1

2
,
1

4
,
1

2
,
1

4
,
1

4
, 0,

1

2
,
1

4
,
1

4
, 0,

1

4
, 0, 0, 1

)
.
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2 Epistasis in the multary case

As f is a unitation function on Ω2, it is completely determined by the vector

h =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

15
16
1
2
1
4

0

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

The associated matrix B4 (see chapter III, section 2.4) is

B4 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
5 12 6 −4 −3

12 32 24 0 −4

6 24 36 24 6

−4 0 24 32 12

−3 −4 6 12 5

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

Hence, the normalized epistasis of f is

ε∗2,4(f) = 1 −
tfB4f

24 ‖f‖2 = 0.483.

Since the cardinality of the search space is 16, we can also encode this function using

a quaternary alphabet, i.e., it can be defined on Ω4 = {0, 1, 2, 3}2. The normalized

epistasis is then given by

ε∗4,2(f) = 1 −
tfG4,2f

42 ‖f‖2 = 0.3.

Note that the normalized epistasis has a smaller value in the multary case.

As a second example we consider the schemata H1 = 11## and H2HH = ##11 of

Ω2 = {0, 1}4, and define the function

f(s) = |{i; s ∈ HiHH }|.

Its normalized epistasis is

ε∗2,4(f) = 1 −
tfG2,4f

24 ‖f‖2 = 0.2.
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Chapter V. Multary epistasis

Note that G2,4 is the matrix given by the recursion relation:

G2,4 =

(
G2,3 + U 2,3 G2,3 − U 2,3

G2,3 − U 2,3 G2,3 + U 2,3

)
,

where

G2,3 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

4 2 2 0 2 0 0 −2

2 4 0 2 0 2 −2 0

2 0 4 2 0 −2 2 0

0 2 2 4 −2 0 0 2

2 0 0 −2 4 2 2 0

0 2 −2 0 2 4 0 2

0 −2 2 0 2 0 4 2

−2 0 0 2 0 2 2 4

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

If we use a quaternary representation, i.e., Ω4 = {0, 1, 2, 3}2, and define f in terms

of H ′
1 = 3# and H ′

2HH = #3, the normalized epistasis becomes

ε∗4,2(f) = 1 −
tfG4,2f

42 ‖f‖2 = 1 − 16 ‖f‖2

42 ‖f‖2 = 0,

where, the recursion relation for G4,2 is now

G4,2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
G4,1 + 3U 4,1 G4,1 − U 4,1 G4,1 − U 4,1 G4,1 − U 4,1

G4,1 − U 4,1 G4,1 + 3U 4,1 G4,1 − U 4,1 G4,1 − U 4,1

G4,1 − U 4,1 G4,1 − U 4,1 G4,1 + 3U 4,1 G4,1 − U 4,1

G4,1 − U 4,1 G4,1 − U 4,1 G4,1 − U 4,1 G4,1 + 3U 4,1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
with G4,1 = 4I4.

3 Extreme values

In this section we take a closer look at the extreme values of the normalized epistasis

of a fitness functions on multary encodings. We observe, as before, that the minimal

and maximal values of ε∗(f) ≡ ε∗n,�(f) correspond to the maximal and minimal values

of

γ(f) ≡ γn,�(f) = tfGn,�f , (||f || = 1)

respectively. In particular, 0 ≤ γ(f) ≤ n�.
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3 Extreme values

3.1 Minimal epistasis

Let us first point out that the theoretical minimal value ε∗(f) = 0 (or, equivalently,

the maximal value γ(f) = n�) may actually be reached. Indeed, if � = 1, then

dim(V 1
1VV ) = n, so V 1

1VV = Rn, and any f : {0, . . . , n − 1} → R (with ||f || = 1, f ∈ Rn)

satisfies

γ(f)= tfGn,1f = (f0ff . . . fnff −1)

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
n . . . 0
...

. . .
...

0 . . . n

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

f0ff
...

fnff −1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
=n

n−1∑
i=0

f 2
iff = n.

In the general case, i.e., when � > 1, we will need the following result:

Lemma V.6. For any positive integer �, we have

∑
0≤i,j<n�

gn,�
ij = n2�.

Proof. Let us apply induction on �. For � = 1, we have Gn,1 = nIn, so the result

is obviously correct. Assume it holds true for length 1, . . . , � − 1 and let us prove it

for length �. It suffices to apply lemma V.1, which easily yields that

∑
0≤i,j<n�

g�,n
ij = n2

∑
0≤i,j<n�

g�−1,n
ij = n2n2(�−1) = n2�.

This proves the assertion.

Consider the vector

f ′ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
u�−1

0�−1

...

0�−1

u�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
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Chapter V. Multary epistasis

and put f = f ′/||f ′||. Then we claim that ε∗(f) = 0, which proves that minimal

normalized epistasis may always be realized. Indeed,

γ(f) = tfG�f =
1

||f ′||2
tf ′G�f

′

=
1

2n�−1
tf ′

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
G�−1 + (n − 1)U �−1 . . . G�−1 − U �−1

...
. . .

...

G�−1 − U �−1 . . . G�−1 + (n − 1)U �−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟f ′

= 2
1

2n�−1
tu�−1(2G�−1 + (n − 2)U �−1)u�−1

=
1

n�−1
(2

∑
0≤i,j<n�

g�−1
ij + (n − 2)

∑
0≤i,j<n�

u�−1
ij )

=
1

n�−1
(2n2(�−1) + (n − 2)n2(�−1)) = n�.

In chapter II we saw that for any fitness function f defined on binary strings, we

have ε∗(f) = 0 if and only if f is a first order function, i.e., f is of the form

f(s) =
∑�−1

i=0 gi(si), for some functions gi which only depend upon the i-th bit si of

s = s�−1 . . . s0. In order to extend this result to multary encodings, let us define for

any 0 ≤ i < � and 0 ≤ j < n the map

hn,�
i,j : Ωn → R : s = s�−1 . . . s0 �→��

{
1 if si = j

0 if si �=�� j.

Denote by h
n,�
i,j (or just h�

i,j) the corresponding vector in Rn�

. Clearly, for any

0 ≤ i < � − 1, we have

h�
i,j =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
h�−1

i,j
...

h�−1
i,j

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,

with

h�
�−1,1 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0�−1

u�−1

0�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, h�

�−1,2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0�−1

0�−1

u�−1

0�−1

...

0�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
, . . . , h�

�−1,n−1 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0�−1

0�−1

...

0�−1

0�−1

u�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
∈ Rn�

.
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3 Extreme values

Lemma V.7. The set

{u�, h
�
i,j; 0 ≤ i < �, 1 ≤ j < n}

is linearly independent.

Proof. Suppose that

�−1∑
i=0

αi1h
�
i,1 + · · · +

�−1∑
i=0

αi,n−1h
�
i,n−1 + βu� = 0�,

and denote by g the corresponding real-valued function

�−1∑
i=1

αi1h
�
i,1 + · · · +

�−1∑
i=1

αi,n−1h
�
i,n−1 + βu�

on Ωn, where u� denotes the constant function with value equal to 1. We then clearly

have β = g(0) = 0. Moreover, for every 1 ≤ j < n − 1 and 0 ≤ i < �, we have

0 = g(jni) =

�−1∑
k=0

αkjh
�
k,j(jn

i) + β = αij .

This proves the assertion.

Arguing as in proposition V.5 shows that the vectors h�
i,j and u� belong to V �

1VV , so it

follows that they actually form a basis for V �
1VV . We are now ready to prove:

Theorem V.8. For any fitness function f on Ωn, the following assertions are equi-

valent:

1. f is a (generalized) first order function, i.e., f =
∑�−1

i=0 gi for some functions

gi on Ωn which only depend on the i-th position,

2. ε∗(f) = 0.

Proof. Clearly, if f is of the form
∑�−1

i=0 gi, where gi only depends upon the i-th

position, then f ∈ V �
1VV , hence ε∗(f) = 0. Indeed, it suffices to verify this for each
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Chapter V. Multary epistasis

of the gi corresponding to the functions gi. Now, if we let aij denote the common

value of all gi(s) with value j on the i-th position (with 1 ≤ j < n), then

gi =

n−1∑
j=1

aijh
�
i,j + ai0(u� − h�

i,1 − · · · − h�
i,n−1),

so gi ∈< h�
i,j, u� >= V �

1VV . Conversely, if f ∈ V �
1VV , then

f =
∑
i,j

αijh
�
i,j + βu� =

�−1∑
i=0

(

n−1∑
j=1

αijh
�
i,j) + βu� =

�−1∑
i=0

gi,

where

g0 =

n−1∑
j=1

α0jh
�
0,j + βu�

and

gi =

n−1∑
j=1

αijh
�
i,j

with 1 ≤ i < �.

3.2 Maximal epistasis

We have already pointed out that ε∗(f) ≤ 1. Moreover, for any f ∈ V �
0VV this

maximum value may actually be reached. However, if we add the extra restriction

that all coordinates of f be positive, i.e., that f corresponds to a positive valued

function on Ωn, then it appears that the maximal value of ε∗(f) is 1 − 1
n�−1 . Put

differently: the minimal value of γ(f) with ||f || = 1 is n.

Let us first point out that the extreme value γ(f) = n may actually be reached.

Indeed, consider the vector f ∈ Rn�

, given by

tf = (α, 0, . . . , 0, α, 0, . . . , 0, α),

where α =
√√

n/n appears at the in�−1
n−1

-th position, for 0 ≤ i < n. Obviously
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3 Extreme values

||f || = 1. Moreover, with m = n�−1
n−1

, we have

γ(f) = tfG�f

= α2((g0,0 + g0,m + · · · + g0,n�−1) + (gm,0 + · · · + gm,n�−1)

+ · · · + (gn�−1,0 + · · · + gn�−1,n�−1))

=
1

n
((g0,0 + gm,m + · · · + gn�−1,n�−1) + 2(g0,m + · · · + g(n−2)m,m))

=
1

n
(ng0,0 + 2

∑
i<j

gim,jm).

Since each of the gim,jm has the same value (n − 1)� + 1 − n�, it thus easily follows

that γ(f) = n, as claimed.

Theorem V.9. For any positive integer � and any positive valued fitness function

f with ||f || = 1, we have

ε∗(f) ≤ 1 − 1

n�−1
.

Proof. Let us argue as in proposition II.13. As the matrix G� is symmetric, we

may find an orthogonal matrix S which diagonalizes it, i.e., with the property that
tSG�S = D is a diagonal matrix, whose diagonal entries are then, of course, the

eigenvalues of G� (taking into account multiplicities). We may thus assume

D =

(
n�I(n−1)�+1 0′

0′ 0n�−(n−1)�−1

)
,

where 0n�−(n−1)�−1 is the square zero-matrix of dimension n� − (n − 1)� − 1 and 0′

the zero-matrix of dimensions (n − 1)� + 1 × n� − (n − 1)� − 1.

Put g = tSf . Then, obviously, γ(f) = n�
∑(n−1)�

i=0 g2
i . The columns of the matrix S

consist of (normalized) eigenvectors of G�. In particular, its first (n−1)�+1 columns

may be chosen to be the normalizations of the vectors v�
0, . . . , v

�
(n−1)� constructed

before. So, let us consider the orthonormal basis

{w�
0, . . . , w

�
(n−1)(�−1), z

�
1, . . . , z

�
n−1}

of V �
1VV , where w�

k = n−�/2 v�
k for 0 ≤ k ≤ (n − 1)(� − 1) and where

z�
i = (i2 + i)−1/2 n(1−�)/2 v�

(n−1)(�−1)+i
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Chapter V. Multary epistasis

for 1 ≤ i < n. We then obtain

γ(f) = γ(f0ff , . . . , fnff �−1)

= n�

(n−1)(�−1)∑
k=0

(tw�
k f )2 + n�

n−1∑
i=1

(tz�
i f)2

= n�(n−�/2)2

(n−1)(�−1)∑
k=0

(tv�
k f)2 + n�(n(1−�)/2)2

n−1∑
i=1

1

i(i + 1)
(tv(n−1)(�−1)+i f )2.

By construction, we thus obtain that γ(f0ff , . . . , fnff �−1) is equal to

γ�γγ −1(f0ff + fnff �−1 + · · · + f(n−1)n�−1 , . . . , fnff �−1−1 + · · · + fnff �−1)

+ n(
1

2
((f0ff + · · · + fnff �−1−1) − (fnff �−1 + · · · + f2ff n�−1−1))

2

+
1

2.3
((f0ff + · · · + fnff �−1−1) + (fnff �−1 + · · · + f2ff n�−1−1) − 2(f2ff n�−1 + · · · + f3ff n�−1−1))

2

+ . . .

+
1

n(n − 1)
((f0ff + · · · + fnff �−1−1) + · · · − (n − 1)(f(n−1)n�−1 + · · · + fnff �−1))

2).

Let us write

f̂ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f0ff + fnff �−1 + · · · + f(n−1)n�−1

...

fnff �−1−1 + · · · + fnff �−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ Rn�−1

,

then

||f̂ ||2 = (f0ff + · · · + f(n−1)n�−1)2 + · · · + (fnff �−1−1 + · · · + fnff �−1)
2

= f 2
0ff + · · · + f 2

nff �−1 + 2(f0ff fnff �−1 + · · · + fnff �−1−1fnff �−1) = a2,

for some a ≥ 1.

Let f ′ = 1
a
f̂ , then ||f ′|| = 1 and

γ(f ′) = γ(
1

a
f̂) =

1

a2
γ(f̂).

Let us now assume that, for some positive integer �, we have γ(f) < n, for some
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fitness function f : Ωn → R with ||f || = 1. Then

γ(f̂) ≤ γ(f̂) +
n−1∑
i=1

n

i(i + 1)
((f0ff + · · · + fnff �−1−1) + . . .

− (i − 1)(f(i−1)n�−1 + · · · + finff �−1−1))
2

= γ(f) < n.

It follows that we also have

γ(f ′) =
1

a2
γ(f̂) <

n

a2
≤ n.

Iterating this process, we would thus find some fitness function f : {0, . . . , n−1} → R

with ||f || = 1, and γ(f) < n. However, this is impossible, as γ is easily seen to

have constant value n on normalized fitness functions of one variable only. This

contradiction proves our assertion.

We just pointed out that the minimal value γ(f) = n, corresponding to maximal

normalized epistasis, may actually be reached. Let us now conclude this section by

solving the problem of completely describing the class of all fitness functions f for

which γ(f) = n.

Fix a positive integer � ≥ 2 and consider mutually distinct indices 0 ≤ i0, . . . , in−1 <

n�−1 with the property that

1.
∑n−1

r=0 ir = n
2
(n�−1 − 1),

2. diris = � − 1 for any 0 ≤ r �=�� s < n.

For each such family of indices i0, . . . , in−1, we define the vectors

q�
i0,...,in−1

=

√
n

n

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
ei0
...

ein−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ Rn�

,

where {e0, . . . , en�−1−1} is the canonical basis of Rn�−1
.
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For example, if n = � = 2, then we necessarily have {i0, i1} = {0, 1} as suitable

indices, and this corresponds to

q2
0,1 =

√
2

2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1

0

0

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ , q2
1,0 =

√
2

2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0

1

1

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

In general, still with n = 2, suitable indices are given by couples 0 ≤ i0, i1 < 2�−1,

with i0 + i1 = 2�−1 − 1 (which automatically implies that di0i1 = � − 1), and this

yields vectors of the form

tq�
k,2�−1−k =

√
2

2
(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) ∈ R2�

with entry 1 at positions k and 2� − k − 1.

As another example, with n = 3 and � = 2, we necessarily have {i0, i1, i2} = {0, 1, 2}
with, e.g.,

tq2
0,1,2 =

√
3

3
(1, 0, 0, 0, 1, 0, 0, 0, 1)

tq2
2,1,0 =

√
3

3
(0, 0, 1, 0, 1, 0, 1, 0, 0) .

One should view the corresponding fitness functions q�
i0,...,in−1

, which we may refer

to as generalized camel functions, as having n peaks lying as far apart as possible.

Note also that suitable sets of indices i0, . . . , in−1 may always be found. For example,

putting

ir = r
n� − 1

n − 1

with 0 ≤ r < n obviously does the trick.

Let us now prove the following result which completely describes the positive func-

tions with maximal normalized epistasis:

Theorem V.10. For any � ≥ 2 and any positive f ∈ Rn�

with ||f || = 1, the

following assertions are equivalent:

1. ε∗(f) = 1 − 1

n�−1
,
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2. f = q�
i0,...,in−1

for suitable indices 0 ≤ i0, . . . , in−1 < n�−1.

Proof. Let us start by proving that the second assertion implies the first one. For

any choice of suitable indices i0, . . . , in−1 we have

γ(f) = tfG�f = (

√
n

n
)2(tei0 , . . . ,

tein−1)G�

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
ei0
...

ein−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

=
1

n
(tei0, . . . ,

tein−1)

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
g0,i0 + g0,n�−1+i1 + · · · + g0,(n−1)n�−1+in−1

...

gn�−1,i0 + · · · + gn�−1,(n−1)n�−1+in−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
=

1

n
{(gi0,i0 + · · · + gi0,(n−1)n�−1+in−1

) + . . .

· · · + (g(n−1)n�−1+in−1,i0 + · · · + g(n−1)n�−1+in−1,(n−1)n�−1+in−1
)}

=
1

n
{ng0,0 + 2((gi0,n�−1+i1 + · · · + gi0,(n−1)n�−1+in−1

) + . . .

· · · + (g(n−2)n�−1+in−2,(n−1)n�−1+in−1
))}

=
1

n
{n((n − 1)� + 1) + 2((n − 1)((n − 1)� + 1)

− n(di0,n�−1+i1 + · · · + di0,(n−1)n�−1+in−1
) + (n − 2)((n − 1)� + 1)

− n(dn�−1+i1,2n�−1+i2 + · · · + dn�−1+i1,(n−1)n�−1+in−1
) + . . .

· · · + 1((n − 1)� + 1) − nd(n−2)n�−1+in−2,(n−1)n�−1+in−1
)}

=
1

n
{((n − 1)� + 1)n2 − 2n(di0,n�−1+i1 + · · · + d(n−2)n�−1+in−2,(n−1)n�−1+in−1

)}

= n((n − 1)� + 1) − 2

(
n

2

)
� = n,

which proves our claim.

To prove the converse, we will use induction on �. Consider a fitness function f whose

corresponding vector f ∈ Rn�

is normalized and has the property that γ(f) = n.
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With notations as in theorem V.9, this means that

n = γ(f0ff , . . . , fnff �−1)

= γ(f̂) + n{1

2
((f0ff + · · · + fnff �−1−1) − (fnff �−1 + · · · + f2ff n�−1−1))

2 + . . .

+
1

n(n − 1)
((f0ff + · · · + fnff �−1−1) + · · · − (n − 1)(f(n−1)n�−1 + · · · + fnff �−1))

2},

hence γ(f̂) ≤ γ(f). Moreover, if we consider again f ′ = f̂/||f̂ || then we have

γ(f ′) =
1

||f̂ ||2γ(f̂) ≤ 1

||f̂ ||2γ(f) ≤ n

||f̂ ||2 ≤ n,

so we necessarily have γ(f ′) = n, in view of the lower bound obtained on the value

of γ, and, of course, this yields ||f̂ || = 1. We thus obtain f̂ = f ′ and γ(f̂) = n,

whence the following identities:

f0ff + · · · + fnff �−1−1 = fnff �−1 + · · · + f2ff n�−1−1

...

= f(n−1)n�−1 + · · · + fnff �−1.

On the other hand, as ||f̂ || = ||f || = 1, we also have

f0ff fnff �−1 = . . . = f0ff f(n−1)n�−1 = . . . = f(n−2)n�−1f(n−1)n�−1 = 0
...

fiff fnff �−1+i = . . . = fiff f(n−1)n�−1+i = . . . = f(n−2)n�−1+if(n−1)n�−1+i = 0
...

fnff �−1−1f2ff n�−1−1 = . . . = fnff �−1−1fnff �−1 = . . . = f(n−1)n�−1−1fnff �−1 =0.

In particular, if � = 2 and γ(f0ff , . . . , fnff 2−1) = n = γ(f̂), then the previous equations

reduce to

f0ff + · · · + fnff −1 = fnff + · · · + f2ff n−1

...

= f(n−1)n + · · · + fnff 2−1
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and
f0ff fnff = . . . = f(n−2)nf(n−1)n = 0

...

fnff −1f2ff n−1 = . . . = f(n−1)n−1fnff 2−1 =0.

Solving this system of equations easily yields that

f =

√
n

n

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
eσ(0)

...

eσ(n−1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ = q2
σ(0),...,σ(n−1) ∈ Rn2

,

where σ is a permutation of {0, . . . , n− 1} and {e0, . . . , en−1} is the canonical basis

of Rn. Of course, if 0 ≤ r �=�� s < n, then σ(r) �=�� σ(s) and

n−1∑
r=0

σ(r) =
n−1∑
r=0

r =
n

2
(n − 1),

so the indices σ(0), . . . , σ(r − 1) satisfy the necessary requirements.

Let us now assume our assertion to hold true for strings of length 2, 3, . . . , � − 1

and let us prove it for length �. Consider a normalized fitness function f defined on

strings of length � and suppose that γ(f) = n. Then, by induction,

f̂ = f ′ = q�−1
i0,...,in−1

∈ Rn�−1

,

for indices 0 ≤ i0, . . . , in−1 < n�−2, with the property that dir,is = � − 1 for r �=�� s

and that
∑n−1

r=0 ir = n
2
(n�−2−1). From the very definition of f̂ = q�−1

i0,...,in−1
, it follows

that its non-zero components may be found in the rows kn�−2 + ik (0 ≤ k < n),

whose expression, for any k, is

fknff �−2+ik + fnff �−1+(kn�−2+ik) + · · · + f(n−1)n�−1+(kn�−2+ik) =

√
n

n
.

On the other hand, the above systems of equations applied to f̂ = q�−1
i0,...,in−1

reduce

to

fiff 0 + fnff �−2+i1 + · · · + f(n−1)n�−2+in−1
= . . .

= f(n−1)n�−1+i0 + f(n−1)n�−1+(n�−2+i1) + · · · + f(n−1)n�−1+((n−1)n�−2+in−1)
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and

fiff 0fnff �−1+i0 = · · · = fiff 0f(n−1)n�−1+i0 = · · · = f(n−2)n�−1+i0f(n−1)n�−1+i0 = 0

...

f(n−1)n�−2+in−1
fnff �−1+((n−1)n�−2+in−1) = . . .

= f(n−1)n�−2+in−1
f(n−1)n�−1+((n−1)n�−2+in−1) = . . .

= f(n−2)n�−1+((n−1)n�−2+in−1)f(n−1)n�−1+((n−1)n�−2+in−1) = 0.

Let us put xk
j = fjnf �−1+kn�−2+ik for any 0 ≤ j, k < n. The above systems of equations

are then shown to be equivalent to

(a)

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
x0

0 + x0
1 + · · · + x0

n−1 =
√

n
√√
n

...

xn−1
0 + · · · + xn−1

n−1 =
√

n
√√
n

(b)

{
x0

0 + x1
0 + · · · + xn−1

0 = · · · =

x0
n−1 + x1

n−1 + · · · + xn−1
n−1

(c1)

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
x0

0x
0
1 = . . . = x0

0x
0
n−1

. . .

= x0
n−2x

0
n−1 = 0

...

(cn−1)

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
xn−1

0 xn−1
1 = . . . = xn−1

0 xn−1
n−1

. . .

= xn−1
n−2x

n−1
n−1 = 0.

In view of the fact that xk
j ≥ 0 for all indices j, k, it follows that in each of the

equations in (a) at least one of the summands has to be non-zero. The equations (c)

imply the uniqueness of this summand. It thus follows that the system of equations

(a) reduces to

x0
r0

= x1
r1

= · · · = xn−1
rn−1

=

√
n

n

for certain 0 ≤ ri < n. Moreover, analyzing the equations (b), it follows that in each

of the composing equations there should be the same number of non-zero terms.
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A tedious, but essentially straightforward verification, shows that in each of them

there is actually exactly just one non-zero component. The solutions are thus of the

form

x0
r0

= x1
r1

= · · · = xn−1
rn−1

=

√
n

n
,

with ri �=�� rj if i �=�� j. In other words,

f =

√
n

n

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
eı̂0
...

eı̂n−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ Rn�

where ĵ = pn�−2 + ip for some suitable indices ip, such that the 0 ≤ ı̂0, . . . , ı̂n−1 <

n�−1 are mutually distinct, and such that

n−1∑
r=0

ı̂r =

n−1∑
r=0

ir +

n−1∑
r=0

rn�−2

=
n

2
(n�−2 − 1) + n�−2n(n − 1)

2

=
n

2
(n�−1 − 1)

and

dı̂j ,̂ık = dpn�−2+ip,qn�−2+iq = 1 + dip,iq = 1 + (� − 1) = �.

This finishes the proof.

4 Example: Generalized unitation functions

The main purpose of this section is to take a detailed look at the epistasis of a

particular class of functions which we may call generalized unitation functions.

A generalized unitation function f on Ωn = {0, 1, . . . , n − 1}� is characterized by the

fact that its value on any s ∈ Ωn is identical to that on any of the strings obtained

from s by permutation of its components. In other words, for any s ∈ Ωn,

f(s) = f(s�−1 . . . s0) = f(sσ(�−1) . . . sσ(0)),

for any permutation σ of {0, 1, . . . , � − 1}. Note that, just as in the binary case,

generalized unitation functions only take a maximum of [n, � ] ≡ (
n+�−1

�

)
different

values.

181



Chapter V. Multary epistasis

4.1 Normalized epistasis

In order not to complicate notations and calculations unnecessarily, we restrict

ourselves to the case n = 3. As in the binary case, we consider the vector

h =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

f(0 . . . 000)

f(0 . . . 001)

f(0 . . . 002)

f(0 . . . 011)

f(0 . . . 012)
...

f(2 . . . 222)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
∈ R(�+2

� ),

whose components will be denoted by h0, h1, . . . , hm, with m =
(

�+2
�

)−1. To obtain

the matrix B3,� with the property tfG3,�f = thB3,�h, we argue as follows. First,

let us inductively define (for any positive integer �) the 3� × (m + 1)-dimensional

matrix A� given by

A� =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
A�−1 O�−1 0�−1

0�−1 A′
�−1 0�−1

0�−1 0�−1 A′
�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ , A′
�−1 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
A′

�−2 O�−2 0�−2

O′′
�−2 A′′

�−2 0�−2

O′′
�−2 0�−2 A′′

�−2

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,

A′′
�−2 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
A′′

�−3 O�−3 0�−3

O
(3)
�−3 A

(3)
�−3 0�−3

O
(3)
�−3 0�−3 A

(3)
�−3

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,. . . , A
(�−1)
1 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎝⎜⎜1

�−1︷︷ ︸︸︸ ︷
0 . . . 0 0 0

0 0 . . . 0 1 0

0 0 . . . 0 0 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎠⎟⎟
where ·(i) indicates an object with i primes, and

— A1 is the 3-dimensional identity matrix and A
(i)
�−i is 3�−i ×

(
m + 1 − i(i+3)

2

)
-

dimensional. Moreover, for all 1 ≤ j < �,

A
(j)
1 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎝⎜⎜1

j︷︷ ︸︸︸ ︷
0 . . . 0 0 0

0 0 . . . 0 1 0

0 0 . . . 0 0 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎠⎟⎟ ;
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— O�−i denotes the zero-matrix of dimension 3�−i × �, 0�−i is the zero-vector of

R3�−i

, and O
(i)
�−i is the 3�−i × i-dimensional zero-matrix.

A tedious but essentially straightforward verification shows that f = A�h. So,

we have that B3,� = tA�G3,�A� which, in particular, implies that B3,� is a square

matrix of dimension [3, � ] =
(

�+2
�

)
.

In order to describe explicitly the components (b3,�)pq of B3,�, denote by Õ�, Ô�

and
̂̂
O�−1 the zero-matrices of dimensions [3, � ] × (� + 1), 3�−1 × [3, � ] − 2 and

3�−1 × [3, � − 1], respectively. Denote by 0̃�−1 and
˜̃
0� the zero-vectors in R[3,�−1] and

R[3,� ]−2, respectively. We may then rewrite A� as

A� =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
A�−1 Ô� Ô�̂̂
O�−1 A′

�−1 Ô�̂̂
O�−1 Ô� A′

�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

I [3,�−1] Õ�−1 0̃�−1˜̃
0� I [3,� ]−2

˜̃
0�˜̃

0�
˜̃
0� I [3,�]−2

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

=

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
A�−1 Ô� Ô�̂̂
O�−1 A′

�−1 Ô�̂̂
O�−1 Ô� A′

�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �,

where the submatrices situated on the diagonal of Y � are the identity matrices of

dimensions [3, � − 1] and [3, � ] − 2.

Using the induction formula given by lemma V.1 for n = 3, it then follows that

B3,� = B′
3,� + B′′

3,�

with

B′
3,� = tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
2 tA�−1U 3,�−1A�−1 − tA�−1U 3,�−1A

′
�−1 − tA�−1U 3,�−1A

′
�−1

−tA′
�−1U 3,�−1A�−1 2 tA′

�−1U 3,�−1A
′
�−1 −tA′

�−1U 3,�−1A
′
�−1

tA′
�−1U 3,�−1A�−1 − tA′

�−1U 3,�−1A
′
�−1 2 tA′

�−1U 3,�−1A
′
�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �,

and

B′′
3,� = tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
tA�−1G3,�−1A�−1

tA�−1G3,�−1A
′
�−1

tA�−1G3,�−1A
′
�−1

tA′
�−1G3,�−1A�−1

tA′
�−1G3,�−1A

′
�−1

tA′
�−1G3,�−1A

′
�−1

tA′
�−1G3,�−1A�−1

tA′
�−1G3,�−1A

′
�−1

tA′
�−1G3,�−1A

′
�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �.

183



Chapter V. Multary epistasis

Some more words about notations. From here to the end of this section we will

denote by k, r, s, t the positive integers with the two following properties:

1. 0 ≤ k, r, s, t ≤ �,

2. for any 0 ≤ p, q ≤ [3, � ] − 1, we have k(k+1)
2

+ r = p and s(s+1)
2

+ t = q, where

k and s are the largest positive integers that satisfy k(k+1)
2

≤ p and s(s+1)
2

≤ q,

respectively.

In order to describe the matrix B ′
3,�, we need the following result:

Lemma V.11. For any positive integer �, consider the matrix

C� = (cpqc ) = tA�U 3,�A�.

Then, for any 0 ≤ p, q < [3, � ], we have

cpqc =

(
�

k

)(
k

r

)(
�

s

)(
s

t

)
.

Proof. Let us argue inductively on �. For � = 1, the matrix A1 is the three-

dimensional identity matrix, hence the assertion holds true. Assume the statement

to be correct for 1, 2, . . . , � − 1 and let us prove it in dimension �. Let us consider

the vectors v� ∈ R[3,� ] and w� ∈ R[3,�+1]−2 defined by

tv� =

((
�

0

)(
0

0

)
,

(
�

1

)(
1

0

)
,

(
�

1

)(
1

1

)
,

(
�

2

)(
2

0

)
, . . . ,

(
�

�

)(
�

0

)
, . . . ,

(
�

�

)(
�

�

))

and

tw� =

((
�

0

)(
0

0

)
, 0,

(
�

1

)(
1

0

)
,

(
�

1

)(
1

1

)
, 0,

(
�

2

)(
2

0

)
, . . . , 0,

(
�

�

)(
�

0

)
, . . . ,

(
�

�

)(
�

�

))
,

respectively. It immediately follows that the matrix C� = tA�U 3,�A� can be rewrit-
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ten as

tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
tA�−1

t ̂̂O�−1
t ̂̂O�−1

tÔ�
tA′

�−1
tÔ�

tÔ�
tÔ�

tA′
�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

U 3,�−1 U 3,�−1 U 3,�−1

U 3,�−1 U 3,�−1 U 3,�−1

U 3,�−1 U 3,�−1 U 3,�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

A�−1 Ô� Ô�̂̂
O�−1 A′

�−1 Ô�̂̂
O�−1 Ô� A′

�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �

= tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
tA�−1U 3,�−1A�−1

tA�−1U 3,�−1A
′
�−1

tA�−1U 3,�−1A
′
�−1

tA′
�−1U 3,�−1A�−1

tA′
�−1U 3,�−1A

′
�−1

tA′
�−1U 3,�−1A

′
�−1

tA′
�−1U 3,�−1A�−1

tA′
�−1U 3,�−1A

′
�−1

tA′
�−1U 3,�−1A

′
�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �

= tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1

w�−1

w�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟(
tv�−1

tw�−1
tw�−1

)
Y �,

and, as

tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1

w�−1

w�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
I [3,�−1]

t˜̃0�
t˜̃0�

tÕ�−1 I [3,� ]−2
t˜̃0�

t0̃�−1
t˜̃0� I [3,� ]−2

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

v�−1

w�−1

w�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

(
�
0

)(
0
0

)(
�−1
1

)(
1
0

)
+
(

�−1
0

)(
0
0

)(
�−1
1

)(
1
1

)
+
(

�−1
0

)(
0
0

)(
�−1
2

)(
2
0

)
+
(

�−1
1

)(
1
0

)(
�−1
2

)(
2
1

)
+
(

�−1
1

)(
1
1

)
+
(

�−1
1

)(
1
0

)
...(

�−1
�−1

)(
�−1
�−1

)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
= v�,

we find that C� = v�
tv�, which proves the assertion.

Let us put C̃�−1 = tA�−1U 3,�−1A
′
�−1 and

˜̃
C�−1 = tA

′
�−1U 3,�−1A

′
�−1. Then, using the

previous lemma and the fact that

C̃�−1 = v�−1
tw�−1˜̃

C�−1 = w�−1
tw�−1,
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we can rewrite

B′
3,� = tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
2C�−1 −C̃�−1 −C̃�−1

− tC̃�−1 2
˜̃
C�−1 − ˜̃

C�−1

− tC̃�−1 − ˜̃
C�−1 2

˜̃
C�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �

= tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
2v�−1

tv�−1 −v�−1
tw�−1 −v�−1

tw�−1

−w�−1
tv�−1 2w�−1

tw�−1 −w�−1
tw�−1

−w�−1
tv�−1 −w�−1

tw�−1 2w�−1
tw�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �

as

B′
3,� = tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1

−w�−1˜̃
0�

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟(
tv�−1,− tw�−1,

t˜̃0�

)
Y �

+ tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1˜̃
0�

−w�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟(
tv�−1,

t˜̃0�, − tw�−1

)
Y �

+ tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
˜̃
0�

−w�−1

w�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟(
t˜̃0�, − tw�−1,

tw�−1

)
Y �

= (B′
3,�)1 + (B′

3,�)2 + (B′
3,�)3.
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Since

tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1

w�−1˜̃
0�

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
I [3,�−1]

t˜̃0�
t˜̃0�

tÕ�−1 I [3,� ]−2
t˜̃0�

t0̃�−1
t˜̃0� I [3,� ]−2

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

v�−1

w�−1˜̃
0�

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

(
�−1
0

)(
0
0

)(
�−1
1

)(
1
0

)− (
�−1
0

)(
0
0

)(
�−1
1

)(
1
1

)(
�−1
2

)(
2
0

)− (
�−1
1

)(
1
0

)
...

−(�−1
�−1

)(
�−1
0

)
...

−(�−1
�−1

)(
�−1
�−1

)
0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
and since (

� − 1

i

)(
i

j

)
−
(

� − 1

i − 1

)(
i − 1

j

)
=

(
�

i

)(
i

j

)
� − 2i + j

�
,(

� − 1

i

)(
i

i

)
=

(
�

i

)(
i

i

)
� − i

�

and

−
(

� − 1

j

)(
� − 1

� − 1

)
=

(
�

�

)(
�

j

)
j − �

�
,

we obtain that

tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1

w�−1˜̃
0�

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

(
�
0

)(
�
1

)(
1
0

)
�−2

�(
�
1

)(
1
1

)
�−1

�
...(

�
k

)(
k
r

)
�−2k+r

�
...

0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.
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In a similar way, using

(
� − 1

i

)(
i

j

)
−
(

� − 1

i − 1

)(
i − 1

j − 1

)
=

(
�

i

)(
i

j

)
� − i − j

�(
� − 1

i

)(
i

0

)
=

(
�

i

)(
i

0

)
� − i

�

−
(

� − 1

� − 1

)(
� − 1

j − 1

)
=

(
�

�

)(
�

j

)
(−j)

�

and

(
� − 1

j

)(
j

j − 1

)
−
(

� − 1

j

)(
j

j

)
=

(
�

j + 1

)(
j + 1

j

)
j − 1

�

−
(

� − 1

j

)(
j

0

)
=

(
�

j + 1

)(
j + 1

0

)−(j + 1)

�(
� − 1

j

)(
j

j

)
=

(
�

j + 1

)(
j + 1

j + 1

)
j + 1

�
,

one can prove that

tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v�−1˜̃
0�

−w�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1(
�
1

)(
1
0

)
�−1

�
...(

�
k

)(
k
r

)
�−k−r

�
...

−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
and

tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
˜̃
0�

−w�−1

w�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

0(
�
1

)(
1
0

) (−1)
�(

�
1

)(
1
1

)
1
�

...(
�
k

)(
k
r

) (2r−k)
�

...

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,
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respectively. As a consequence, it is easy to check that

(B′
3,�)1 =

(
b′pq,b 1

)
=

(
�

k

)(
k

r

)(
�

s

)(
s

t

)
(� − 2k + r)(� − 2s + t)

�2
,

(B′
3,�)2 =

(
b′pq,b 2

)
=

(
�

k

)(
k

r

)(
�

s

)(
s

t

)
(� − k − r)(� − s − t)

�2
,

(B′
3,�)3 =

(
b′pq,b 3

)
=

(
�

k

)(
k

r

)(
�

s

)(
s

t

)
(k − 2r)(s − 2t)

�2
.

With notations as before, one now easily proves:

Proposition V.12. For any 0 ≤ p, q < [3, � ], the component (b′3,�)pq of the matrix

B′
3,� is given by

(b′3,�)pq =

(
�

k

)(
k

r

)(
�

s

)(
s

t

)
×

1

�2
((� − 2k + r)(� − 2s + t) + (� − k − r)(� − s − t) + (k − 2r)(s − 2t)) .

Proof. This trivially follows from the previous expressions of (B ′
3,�)1, (B′

3,�)2 and

(B′
3,�)3.

To obtain an explicit expression of the matrix B ′′
3,�, we now consider the matrices

B̃3,�−1 =
(
(̃b3,�−1)pq

)
= tA�−1G3,�−1A

′
�−1˜̃

B3,�−1 =

(
(̃̃b3,�−1)pq

)
= tA

′
�−1G3,�−1A

′
�−1,

and write µ and η for [3, �− 1]− 1 and [3, � ]− 3, respectively. Then, the next result

calculates the matrix B′′
3,� = (b′′3,�)pq:

Proposition V.13. The components (b′′3,�)pq of the matrix B′′
3,� are determined by:
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1.

(b′′3,�)00 = (b3,�−1)00

(b′′3,�)01 = (b3,�−1)01 + (̃b3,�−1)00

(b′′3,�)0,η+2 = (̃b3,�−1)0η

(b′′3,�)11 = (b3,�−1)11 + 2(̃b3,�−1)10 + (̃̃b3,�−1)00

(b′′3,�)1,η+2 = (̃b3,�−1)1η + (̃̃b3,�−1)0η

(b′′3,�)η+2,η+2 = (̃̃b3,�−1)ηη,

2. (a) if 2 ≤ q ≤ µ, then

(b′′3,�)0q = (b3,�−1)0,q + (̃b3,�−1)0,q−1 + (̃b3,�−1)0,q−2

(b′′3,�)1,q = (b3,�−1)1,q + (̃b3,�−1)1,q−1 + (̃b3,�−1)1,q−2

+ (̃b3,�−1)q,0 + (̃̃b3,�−1)0,q−1 + (̃̃b3,�−1)0,q−2,

(b) if µ < q ≤ η + 1, then

(b′′3,�)0q = (̃b3,�−1)0,q−1 + (̃b3,�−1)0,q−2

(b′′3,�)1q = (̃b3,�−1)1,q−1 + (̃b3,�−1)1,q−2 + (̃̃b3,�−1)0,q−1 + (̃̃b3,�−1)0,q−2,

3. for any 2 ≤ p ≤ µ, we have

(a) if p ≤ q ≤ µ, then

(b′′3,�)pq = (b3,�−1)pq + (̃b3,�−1)p,q−1 + (̃b3,�−1)p,q−2

+ (̃b3,�−1)q,p−1 + (̃b3,�−1)q,p−2 + (̃̃b3,�−1)p−1,q−1

+ (̃̃b3,�−1)p−1,q−2 + (̃̃b3,�−1)p−2,q−1 + (̃̃b3,�−1)p−2,q−2,

(b) if µ < q ≤ η + 1, then

(b′′3,�)pq = (̃b3,�−1)p,q−1 + (̃b3,�−1)p,q−2 + (̃̃b3,�−1)p−1,q−1

+ (̃̃b3,�−1)p−1,q−2 + (̃̃b3,�−1)p−2,q−1 + (̃̃b3,�−1)p−2,q−2,
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(c)

(b′′3,�)p,η+2 = (̃b3,�−1)p,η + (̃̃b3,�−1)p−1,η + (̃̃b3,�−1)p−2,η,

4. (a) if µ < p ≤ q ≤ η + 1, then

(b′′3,�)pq = (̃̃b3,�−1)p−1,q−1 + (̃̃b3,�−1)p−1,q−2

+ (̃̃b3,�−1)p−2,q−1 + (̃̃b3,�−1)p−2,q−2,

(b) if µ < p ≤ η + 1, then

(b′′3,�)p,η+2 = (̃̃b3,�−1)p−1,η + (̃̃b3,�−1).

Proof. In order to prove the validity of the previous relations, it suffices to use the

fact that B′′
3,� can be written as

B′′
3,� = tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
B3,�−1 B̃3,�−1 B̃3,�−1

tB̃3,�−1
˜̃
B3,�−1

˜̃
B3,�−1

tB̃3,�−1
˜̃
B3,�−1

˜̃
B3,�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �

= tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
B3,�−1 B̃3,�−1 B̃3,�−1

tB̃3,�−1 Oβ Oβ

tB̃3,�−1 Oβ Oβ

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y � + tY �

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
Oα Oαβ Oαβ

tOαβ
˜̃
B3,�−1

˜̃
B3,�−1

tOαβ
˜̃
B3,�−1

˜̃
B3,�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟Y �,

where Oαβ is the zero-matrix of dimensions [3, �−1]× [3, � ]−2 and Oα and Oβ are

the square zero-matrices of dimension [3, � − 1] and [3, � ] − 2, respectively.

From the previous results and the fact that B3,� = B′
3,� + B′′

3,�, it trivially follows:

Corollary V.14. The components (b3,�)pq of the matrix B3,� are determined by

1.

(b3,�)00 = (b3,�)η+2,η+2 = 1 + 2�

(b3,�)01 = 2�(� − 1)

(b3,�)0,η+2 = 1 − �

(b3,�)11 = (b3,�−1)11 + 2(b3,�−1)01 + (b3,�−1)00 + (� − 2)2 + (� − 1)2 + 1

(b3,�)1,η+2 = (b3,�−1)1µ + (b3,�−1)0µ − �,
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2. (a) if 2 ≤ q ≤ µ, then

(b3,�)0q = (b3,�−1)0q + (̃b3,�−1)0,q−1 + (̃b3,�−1)0,q−2 +
(

�
s

)(
s
t

) (2�−3s)
�

(b3,�)1q = (b3,�−1)1q + (̃b3,�−1)1,q−1 + (̃b3,�−1)1,q−2

+ (̃b3,�−1)q,0 + (̃̃b3,�−1)0,q−1 (̃̃b3,�−1)0,q−2

+
(

�
s

)(
s
t

)1
�

((� − 2)(� − 2s + t) + (� − 1)(� − s − t) + (s − 2t)) ,

(b) if µ < q ≤ η + 1, then

(b3,�)0q = (̃b3,�−1)0,q−1 + (̃b3,�−1)0,q−2 +
(

�
s

)(
s
t

) (2�−3s)
�

(b3,�)1q = (̃b3,�−1)1,q−1 + (̃b3,�−1)1,q−2 + (̃̃b3,�−1)0,q−1 + (̃̃b3,�−1)0,q−2

+
(

�
s

)(
s
t

)1
�

((� − 2)(� − 2s + t) + (� − 1)(� − s − t) + (s − 2t)) ,

3. for any 2 ≤ p ≤ µ, we have

(a) if p ≤ q ≤ µ, then

(b3,�)pq = (b3,�−1)pq + (̃b3,�−1)p,q−1 + (̃b3,�−1)p,q−2 + (̃b3,�−1)q,p−1

+ (̃b3,�−1)q,p−2 + (̃̃b3,�−1)p−1,q−1 + (̃̃b3,�−1)p−1,q−2

+ (̃̃b3,�−1)p−2,q−1 + (̃̃b3,�−1)p−2,q−2

+
(

�
k

)(
k
r

)(
�
s

)(
s
t

) (�−2k+r)(�−2s+t)+(�−k−r)(�−s−t)+(k−2r)(s−2t)
�2

,

(b) if µ < q ≤ η + 1, then

(b3,�)pq = (̃b3,�−1)p,q−1 + (̃b3,�−1)p,q−2 + (̃̃b3,�−1)p−1,q−1

+ (̃̃b3,�−1)p−1,q−2 + (̃̃b3,�−1)p−2,q−1 + (̃̃b3,�−1)p−2,q−2

+
(

�
k

)(
k
r

)(
�
s

)(
s
t

)
(�−2k+r)(�−2s+t)+(�−k−r)(�−s−t)+(k−2r)(s−2t)

�2
,

(c)

(b3,�)p,η+2 = (̃b3,�−1)p,η + (̃̃b3,�−1)p−1,η + (̃̃b3,�−1)p−2,η +

(
�

k

)(
k

r

)
(3r − �)

�
,

4. if µ < p ≤ η + 1, then we have
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(a) if p ≤ q ≤ η + 1, then

(b3,�)pq = (̃̃b3,�−1)p−1,q−1 + (̃̃b3,�−1)p−1,q−2 + (̃̃b3,�−1)p−2,q−1 + (̃̃b3,�−1)p−2,q−2

+
(

�
k

)(
k
r

)(
�
s

)(
s
t

)
(�−2k+r)(�−2s+t)+(�−k−r)(�−s−t)+(k−2r)(s−2t)

�2
,

(b)

(b3,�)p,η+2 = (̃̃b3,�−1)p−1,η + (̃̃b3,�−1)p−2,η +

(
�

k

)(
k

r

)
(3r − �)

�
.

We now finally may prove:

Theorem V.15. For any 0 ≤ p, q < [3, � ], the component (b3,�)p,q of the matrix

B3,� is given by

(b3,�)p,q =
(

�
k

)(
k
r

)(
�
s

)(
s
t

) (
1 + (�−2k+r)(�−2s+t)+(�−k−r)(�−s−t)+(k−2r)(s−2t)

�

)
.

Proof. The previous result directly yields that our claim is true for (b3,�)00, (b3,�)01,

(b3,�)0,η+2 and (b3,�)η+2,η+2. Using an induction argument on �, one easily verifies the

expression for (b3,�)11 and (b3,�)1,η+2.

For the other elements of the matrix, one also proceeds by induction on �, for each

of the different cases. As the technique is long but rather straightforward, we will

only detail the involved calculations for the remaining elements of the first row of

B3,�, i.e., those (b3,�)0q with q ≥ 2. The other components may be calculated in a

similar way.

Observe that for the components (b3,�)0q we have k = r = 0.

Let us first assume that q ≤ µ. Hence for � = 1, we have (b3,1)02 = 0, implying the

statement to hold true. Assume the statement to be correct for 1, 2, . . . , � − 1 and

let us prove it in dimension �.

Fixing q = s(s+1)
2

+ t, we will distinguish three cases, according to the values of t

(t = s, t = 0 and t �=�� s, 0).

i) If t = s then q − 1 = s(s+1)
2

+ (s − 1) and (̃b3,�−1)0,q−1 = 0. Moreover,

(̃b3,�−1)0,q−2 = (b3,�−1)0,bq , with q̂ = (q − 2) − (s − 1) = (s−1)s
2

+ (s − 1). (Note

that the columns of B̃3,�−1 which are located at positions (s+1)(s+2)
2

− 1, with

s ≥ 1, are zero-columns.) Then, from the previous corollary, we have

(b3,�)0q = (b3,�−1)0,q + (b3,�−1)0,bq +

(
�

s

)(
s

t

)
(2� − 3s)

�
.
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Now, using the induction hypothesis on �, it follows that

(b3,�)0q =
(

�−1
s

)
(2� − 3s − 1) +

(
�−1
s−1

)
(2� − 3s + 2) +

(
�
s

) (2�−3s)
�

=
(

�
s

)
(2� − 3s + 1)

=
(

�
0

)(
0
0

)(
�
s

)(
s
s

) (
1 + �(�−s)+�(�−2s)

�

)
.

ii) If t = 0, then (̃b3,�−1)0,q−1 = (b3,�−1)0,bq, with q̂ = (s−1)s
2

and (̃b3,�−1)0,q−2 = 0.

From the previous result and the induction hypothesis on �, we again obtain

that

(b3,�)0q =

(
�

s

)
(2� − 3s + 1).

iii) If t �=�� s, 0 then, (̃b3,�−1)0,q−1 = (b3,�−1)0,bq, with q̂ = (s−1)s
2

+ t and (̃b3,�−1)0,q−2 =

(b3,�−1)0,bbq where ̂̂q = (s−1)s
2

+(t−1) = q̂−1. Then the same reasoning as before

shows that

(b3,�)0q = (b3,�−1)0,q−1 + (b3,�−1)0,bq + (b3,�−1)0,bq−1 +
(

�
s

)(
s
t

) (2�−3s)
�

=
(

�−1
s

)(
s
t

)
(2� − 3s − 1) +

(
�−1
s−1

)(
s−1

t

)
(2� − 3s + 2)

+
(

�−1
s−1

)(
s−1
t−1

)
(2� − 3s + 2) +

(
�
s

)(
s
t

) (2�−3s)
�

=
(

�
s

)(
s
t

)
(2� − 3s + 1),

as wanted.

Let us now assume that µ < q ≤ η + 1 (hence � ≥ 2, and q = �(�+1)
2

+ t, with

0 ≤ t < �). We again argue by induction on �. If � = 2, then (as µ = 2 and η = 3),

we have (b3,2)03 = −1 and (b3,2)04 = −2, which satisfy the required expression.

Let us suppose that the assertion is true for length 2, 3, . . . , �− 1 and let us prove it

for �. Applying corollary V.14 then yields

(b3,�)0,q = (̃b3,�−1)0,q−1 + (̃b3,�−1)0,q−2 − (
�
t

)
.

As (̃b3,�−1)0,q−1 = (b3,�)0,bq, with q̂ = (�−1)�
2

+t, we have (̃b3,�−1)0,q−2 = (b3,�)0,bq−1. Then

(b3,�)0,q = (b3,�)0,bq + (b3,�)0,bq−1 − (
�
t

)
=
((

�−1
t

)
+
(

�−1
t−1

))
(2 − �) − (

�
t

)
=
(

�
t

)
(1 − �),
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which finishes the proof for the components of the first row of B3,�.

With the above matrix B3,� and the fact that f is completely determined by the

vector h, the definition of normalized epistasis will then simplify to

ε∗3,�(f) = 1 − 1

3�

th B3,� h

‖f‖2
,

with

‖f‖2 =

m∑
p=0

(
�

k

)(
k

r

)
h2

p,

where, as above, k, r ∈ N with 0 ≤ k, r ≤ � and k is the greatest non-negative

integer such that p = k(k+1)
2

+ r.

To conclude this section, we now include two easy examples for which we will obtain

the normalized epistasis using the above formula.

Let us start by considering the needle-in-a-haystack function, located at t = 0,

as an example of a generalized unitation function on Ω3 = {0, 1, 2}�. Then, as

needle(t) = δt,0, for all t, we have that the vector h is given by

h = t(1, 0, . . . , 0) ∈ R[3,�]

and so, from theorem V.15, it follows that

ε∗3,�(needle) = 1 − (b�
3)00

3�
= 1 − 2� + 1

3�
.

Let us now consider generalized camel functions, and let us denote by i0, i1, i2 the

indices such that f(ci0) = f(ci1) = f(ci2) =
√

3
3

, (they are the only components of f

whose values are different from zero, and they are at a pairwise Hamming distance

of �). So, the associated vector f of the function f is the sum of three (suitable)

vectors of the canonical basis of R3�

. To keep the calculations of the normalized

epistasis simple, we may assume that i0 = 0, i1 = 3�−1
2

and i2 = 3�−1, and therefore

f =
∑2

k=0 e
k 3�−1

2

, i.e., the non-zero components of f corresponding to the images

of the strings 00 . . . 0, 11 . . . 1 and 22 . . . 2. This is equivalent to saying that the

components of the [3, �]-dimensional vector h associated to f are given by

hj =

⎧⎨⎧⎧⎩⎨⎨1 if j = 0, ν, η + 2

0 otherwise,
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for 0 ≤ j <
(

�+2
2

)
and where ν =

(
�+1
2

)
and η =

(
�+2
2

)− 2 (as in theorem V.15),

and

ε∗3,�(f) = 1 − 1

3�

th B3,� h

‖f‖2

= 1 − 1

3�

(b�
3)00 + (b�

3)ν,ν + (b�
3)η+2,η+2 + 2

{
(b�

3)0,ν + (b�
3)0,η+2 + (b�

3)ν,η+2

}
‖f‖2

.

Now, using corollary V.14 and theorem V.15, a straightforward calculation shows

that

(b�
3)ν,ν = (b�

3)00 = (b�
3)η+2,η+2 = 1 + 2�

(b�
3)0,ν = (b�

3)ν,η+2 = (b�
3)0,η+2 = 1 − �,

and so,

ε∗3,�(f) = 1 − 1

3�

3(1 + 2�) + 2 (3(1 − �))

3
= 1 − 1

3�−1
.

4.2 Extreme values of normalized epistasis

It follows from theorem V.9 that for any positive fitness function f defined on ternary

strings of length �, we have

0 ≤ ε∗(f) ≤ 1 − 1

3�−1
.

We will conclude this chapter by briefly considering the extreme values of normalized

epistasis when restricting to generalized unitation functions.

As far as the maximal value is concerned, recall that theorem V.10 characterizes

the functions f with maximal normalized epistasis. Among them, we have just

shown (in the previous section for the generalized camel functions) that the maximal

normalized epistasis may be realized by generalized unitation functions.

Let us now concentrate on the minimal value. First, note that from the expression

of normalized epistasis, in terms of h and B3,�, it immediately follows that

ε∗(f) = 1 − (2� + 1)

3�
+

2

3�

H(h0, . . . , hm)
m∑

p=0

(
�
k

)(
k
r

)
hp2
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where

H(h0, . . . , hm) =
1

2

⎛⎜⎛⎛⎝⎜⎜ m∑
p=0

(
(2� + 1)

(
�

k

)(
k

r

)
− (b3,�)pp

)
hp2 −

∑
p,q
p 	=		 q

(b3,�)pqhphq

⎞⎟⎞⎞⎠⎟⎟ .

To obtain the extreme values of the normalized epistasis, we will analyze the critical

points of the function H , with the restriction that ‖f‖ = 1, i.e., we have to calculate

the critical points of

F (h0, . . . , hm, λ) = H(h0, . . . , hm) + λ

(
m∑

p=0

(
�

k

)(
k

r

)
h2

p − 1

)
.

We will do this by using the method of Lagrange multipliers, which leads to the

following homogeneous system of m + 1 equations:

∂F

∂h0
=2λh0 −

m∑
q=1

(b3,�)0qhq = 0

∂F

∂h1

=

((
�

1

)
(2� + 1 + 2λ) − (b3,�)11

)
h1 −

m∑
q=0
q 	=1		

b1qhq = 0

...

∂F

∂hp
=

((
�

k

)(
k

r

)
(2� + 1 + 2λ) − (b3,�)pp

)
hp −

m∑
q=0
q 	=		 p

(b3,�)pqhq = 0

...

∂F

∂hm
=2λhm −

m−1∑
p=0

(b3,�)pmhp = 0.

Its solutions are the eigenvectors h ∈ Rm+1 associated with the eigenvalues of the

matrix B̂3,� whose elements (̂b3,�)pq satisfy, for any 0 ≤ p, q ≤ m,

(̂b3,�)pq =
(b3,�)pq(

�
k

)(
k
r

) .

We are interested in the eigenvectors with hi ≥ 0 for all i.

In order to obtain the eigenvalues of B̂3,�, we will use the following two lemmas:
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Lemma V.16. For any integers 0 ≤ u, v ≤ � and writing z = u(u+1)
2

+ v and

m = [3, � ] − 1, we have

i)
m∑

z=0

(
�
u

)(
u
v

)
= 3�,

ii)
m∑

z=0

u
(

�
u

)(
u
v

)
=2

m∑
z=0

v
(

�
u

)(
u
v

)
= 2� 3�−1,

iii)
m∑

z=0

u2
(

�
u

)(
u
v

)
= 2�(2� + 1)3�−2,

m∑
z=0

v2
(

�
u

)(
u
v

)
= �(� + 2)3�−2,

iv)
m∑

z=0

uv
(

�
u

)(
u
v

)
= �(2� + 1)3�−2,

Proof. To prove i), note that (x + 1)� =
�∑

u=0

(
�
u

)
xu implies, in particular,

3� =

�∑
u=0

(
�

u

)
2u =

�∑
u=0

(
�

u

)( u∑
v=0

(
u

v

))

=

(
�

0

)(
0

0

)
+

(
�

1

)((
1

0

)
+

(
1

1

))
+ . . .

+

(
�

�

)((
�

0

)
+

(
�

1

)
+ · · · +

(
�

�

))
=

m∑
z=0

(
�

u

)(
u

v

)
.

On the other hand, if we differentiate the function ϕ(x) = (x + 1)� at x = 2, we

immediately obtain
m∑

z=0

u

(
�

u

)(
u

v

)
= 2� 3�−1.

Moreover,

m∑
z=0

v

(
�

u

)(
u

v

)
=

�∑
u=0

(
�

u

)( u∑
v=0

v

(
u

v

))
=

1

2

�∑
u=0

u

(
�

u

)
2u

=
1

2

�∑
u=0

u

(
�

u

)( u∑
v=0

(
u

v

))
=

1

2

m∑
z=0

u

(
�

u

)(
u

v

)
.

This proves ii).
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To check the first expression in iii), note that calculating the second derivative of

the function ϕ at x = 2 yields

�(� − 1)3�−2 =
1

4

�∑
u=0

u(u − 1)

(
�

u

)
2u

=
1

4

(
�∑

u=0

u2

(
�

u

)
2u −

�∑
u=0

u

(
�

u

)
2u

)
.

Applying ii) then does the trick. The second expression may be derived similarly,

using the fact that
u∑

v=0

v2
(

u
v

)
= u(u + 1)2u−2. Finally, note that iv) is obtained in a

straightforward manner from the second expression in iii).

Lemma V.17. For any positive integer �, we have B̂
2

3,� = 3�B̂3,�.

Proof. Let us denote by (̂b3,�)
2
pq the generic element of the matrix B̂

2

3,�. Then

(̂b3,�)
2
pq =

m∑
z=0

(̂b3,�)pz (̂b3,�)zq.

We proceed by expanding this expression using theorem V.15 and the previous

lemma, which results in a tedious and uninteresting calculation leading to the re-

quired equality.

Note that lemma V.17 implies the eigenvalues of B̂3,� to be 0 and 3�. In order to

describe the eigenspaces of B̂3,�, let us calculate its rank.

Lemma V.18. For any positive integer �, we have rk(B̂3,�) = 3.

Proof. From the relationship between the elements of the matrices B3,� and B̂3,�, it

follows that rk(B̂3,�) = rk(B3,�). Moreover, for any 0 ≤ p, q < [3, � ],

(b3,�)pq = αp(b3,�)0q + βpββ (b3,�)1q + γq(b3,�)2q,
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with αp, βpββ , γq ∈ R. Indeed,

(b3,�)pq =
(

�
k

)(
k
r

)(
�
s

)(
s
t

) (
1 + (�−2k+r)(�−2s+t)+(�−k−r)(�−s−t)+(k−2r)(s−2t)

�

)
=
(

�
k

)(
k
r

)
(1 − k)

(
�
s

)(
s
t

)
(1 + 2� − 3s)

+
(

�
k

)(
k
r

) (k−r)
�

(
�
1

)(
�
s

)(
s
t

) (
1 + (�−2)(�−2s+t)+(�−1)(�−s−t)+(s−2t)

�

)
+
(

�
k

)(
k
r

)
r
�

(
�
1

)(
�
s

)(
s
t

) (
1 + (�−1)(�−2s+t)+(�−2)(�−s−t)−(s−2t)

�

)
=
(

�
k

)(
k
r

)
(1 − k)(b3,�)0q +

(
�
k

)(
k
r

) (k−r)
�

(b3,�)1q +
(

�
k

)(
k
r

)
r
�
(b3,�)2q.

However,

det

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
(b3,�)00 (b3,�)01 (b3,�)02

(b3,�)10 (b3,�)11 (b3,�)12

(b3,�)20 (b3,�)21 (b3,�)22

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ = 27�2,

which finishes the proof.

If we denote by W 3,�
0WW and W 3,�

1WW the eigenspaces in R(�+2
� ) corresponding to the ei-

genvalues 0 and 3� of B̂3,�, then R(�+2
� ) = W 3,�

0WW ⊕ W 3,�
1WW . As W 3,�

0WW = ker(B̂3,�) and

W 3,�
1WW = Im(B̂3,�), it is clear that dim(W 3,�

0WW ) = �(�+3)
2

− 2 and dim(W 3,�
1WW ) = 3.

Let us prove:

Proposition V.19. The vectors v1, v2, and v3 given by

tv1 = (1, 0, 0,−1,−1,−1,−2,−2,−2,−2, . . . ,−
�+1︷︷ ︸︸︸ ︷

(� − 1), . . . ,−(� − 1))

tv2 = (0, 1, 0, 2, 1, 0, 3, 2, 1, . . . , 0, �, (� − 1), . . . , 2, 1, 0)

tv3 = (0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . . , 0, 1, 2, . . . , (� − 1), �) ,

form a basis for W 3,�
1WW .

Proof. As the three vectors are obviously linearly independent, it clearly suffices to

show that they belong to W 3,�
1WW . We will verify this only for the vector v3. A similar

reasoning then works for the remaining two vectors.
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First note that if p = k(k+1)
2

+ r, (0 ≤ k, r ≤ �), then the p-th component of v1, v2

and v3 is, respectively, 1 − k, k − r and r. So,

(B̂3,�v3)p =
m∑

q=0

b̂pqb (v3)q

=
∑(

�
s

)(
s
t

)
t
(
1 + (�−2k+r)(�−2s+t)+(�−k−r)(�−s−t)+(k−2r)(s−2t)

�

)
=
∑

t
(

�
s

)(
s
t

)
+ (�−2k+r)

�

∑
(�t − 2st + t2)

(
�
s

)(
s
t

)
+ (�−k−r)

�

∑
(�t − st − t2)

(
�
s

)(
s
t

)
+ (k−2r)

�

∑
(st − 2t2)

(
�
s

)(
s
t

)
.

Now, using lemma V.16, it easily follows that

(B̂3,�v3)p = 3�r = 3�(v3)p.

Note that thanks to theorem V.9, it is easy to prove that the eigenvectors associated

with the eigenvalue zero do not contribute positive solutions to the system. Indeed:

Proposition V.20. If h = t(h0, . . . , hm) ∈ W 3,�
0WW then at least one of the components

of h is negative.

Finally, the following result completely characterizes the generalized unitation func-

tions on ternary alphabets with minimal epistasis:

Proposition V.21. Let f be a positive-valued generalized unitation function, defined

on a multary encoding with an alphabet of three elements. Then f has zero epistasis

if and only if the p-th component (with p = k(k+1)
2

+ r) of its associated vector h

equals (1 − k)h0 + (k − r)h1 + rh2.
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Proof. We show that thB3,�h = 3� ‖f‖2. A direct calculation yields

‖f‖2 =

m∑
p=0

(
�

k

)(
k

r

)
h2

p

=
m∑

p=0

(
�

k

)(
k

r

)
((1 − k)h0 + (k − r)h1 + rh2)

2

= h2
0

m∑
p=0

(
�

k

)(
k

r

)
(1 − k)2 + h2

1

m∑
p=0

(
�

k

)(
k

r

)
(k − r)2

+ h2
2

m∑
p=0

(
�

k

)(
k

r

)
r2 + 2h0h1

m∑
p=0

(
�

k

)(
k

r

)
(1 − k)(k − r)

+ 2h0h2

m∑
p=0

(
�

k

)(
k

r

)
(1 − k)r + 2h1h2

m∑
p=0

(
�

k

)(
k

r

)
(k − r)r

and

thB3,�h =
m∑

p=0

(b3,�)pph
2
p +

∑
p,q
p 	=		 q

(b3,�)pqhphq

=

m∑
p=0

(b3,�)pp ((1 − k)h0 + (k − r)h1 + rh2)
2

+
∑
p,q
p 	=		 q

(b3,�)pq ((1 − k)h0 + (k − r)h1 + rh2) ((1 − s)h0 + (s − t)h1 + th2) ,

where the q-th component has been represented, as always, by q = s(s+1)
2

+ t, with

0 ≤ s, t ≤ �. We prove that they are equal by showing that the coefficients of h2
0,

h2
1, h2

2, h0h1, h0h2 and h1h2 are equal in both expressions.

In particular, the coefficient of h2
0 in thB3,�h is∑m

p=0(b3,�)pp(1 − k)2 +
∑

p,q
p 	=		 q

(b3,�)pq(1 − k)(1 − s)

=
∑m

p=0

(
�
k

)2(k
r

)2
(
1 + (�−2k+r)2+(�−k−r)2+(k−2r)2

�

)
(1 − k)2

+
∑

p,q
p 	=		 q

(
�
k

)(
k
r

)(
�
s

)(
s
t

) (
1 + (�−2k+r)(�−2s+t)+(�−k−r)(�−s−t)+(k−2r)(s−2t)

�

)
(1 − k)(1 − s).

Fixing the p-th term, applying lemma V.16 and extracting the common factor(
�
k

)(
k
r

)
(1 − k),
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we obtain(
�
k

)(
k
r

)(
1 +

(� − 2k + r)2 + (� − k − r)2 + (k − 2r)2

�

)
(1 − k)

+
∑

q
q 	=		 p

(
�
s

)(
s
t

)(
1 + (�−2k+r)(�−2s+t)+(�−k−r)(�−s−t)+(k−2r)(s−2t)

�

)
(1 − s)

= 3�(1 − k).

A similar reasoning applies to compare the coefficients of h2
1, h2

2, h0h1, h0h2 and

h1h2, which finishes the proof.

Note that one can also obtain the vector h of the previous proposition directly. By

theorem V.8, any function f on Ω3 has epistasis zero if and only if

f(s�−1 . . . s0) =

�−1∑
i=0

gi(si) =
∑

i1 : si1
=0

gi1(0) +
∑

i2 : si2
=1

gi2(1) +
∑

i3 : si3
=2

gi3(2).

The function f is a generalized unitation function if and only if

f(s�−1 . . . s0) = hp = f(

�−k︷︷ ︸︸︸ ︷
0 . . . 0 1 . . . 1

r︷︷ ︸︸︸ ︷
2 . . . 2) =

︷
· · · = f(

r︷︷ ︸︸︸ ︷
2 . . . 2 1 . . . 1

�−k︷︷ ︸︸︸ ︷
0 . . . 0)

︷
for some 0 ≤ p <

(
�+2

�

)
. Combining both expressions, we have

gi(1) − gi(0) = α

gi(2) − gi(0) = β

for all 0 ≤ i < � when f is a generalized unitation function with zero epistasis. This

implies

f(s) = hp = rβ + (k − r)α + f(0 . . . 0).

In particular,

h0 = f(0 . . . 0), h1 = α + f(0 . . . 0) and h2 = β + f(0 . . . 0)

and from this it follows that α = h1 − h0 and β = h2 − h0. So for all 0 ≤ p <
(

�+2
�

)
we have hp = (1 − k)h0 + (k − r)h1 + rh2, as claimed.
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Chapter VI

Generalized Walsh transforms

We saw in chapter IV that the Walsh coefficients associated to schemata over a bin-

ary alphabet include, in a very natural way, the basic properties of these schemata.

They allow for a very efficient calculation of normalized epistasis for many classes of

functions. In this chapter, we show how the same point of view may be applied in

the non-binary case by introducing two suitable generalizations of the Walsh trans-

form. We use one of these generalizations to show that epistasis can be computed

efficiently in the multary case as well. The same transform is then used to general-

ize some results of Heckendorn and Whitley [31, 32] about the moments of schema

fitness distributions.

1 Generalized Walsh transforms

In this section, we present two possible generalizations of the Walsh transform,

making it applicable as a basic tool in the multary case as well. It appears that each

of these generalizations yields a nice, efficient way of calculating epistasis, when

dealing with fitness functions over a multary alphabet. Moreover, some examples

will be included, aiming to give an indication of the strength of this approach.



1.1 First generalization to the multary case

In this section, we will see how the use of partition coefficients will be useful in order

to generalize the “classical” Walsh transform to the multary case.

So, let us start by defining the partition coefficient ε(H) of a schema H over a

multary alphabet. Exactly as in the binary case, we want these ε(H) to satisfy the

general partition equation

f(H) =
∑

H′⊃H

ε(H ′),

where, as before, H ′ ⊃ H means that H and H ′ agree on the fixed positions of H .

As in the binary case, the partition coefficient of the schema # . . .# will be exactly

the average of the fitness function, i.e., ε(# . . .#) = f(# . . .#) = f̄ . On the other

hand, the fitness value of any schema H of order 1 can be approximated by the

schema # . . .#, and the difference between this and its correct value will be the

partition coefficient of H . So, ε(# . . .#i) = f(# . . .#) − f(# . . .#i), for example.

Iterating, let us consider a schema H of order 2, for example H = # . . .#ij (with

i, j ∈ Σ). Then we may interpret H as a combination of the schemata H ′ with order

1 and such that H ′ ⊃ H . So, as a first approximation, we could calculate the fitness

value of H as follows:

f(H) ≈ f(# . . .#) + (f(# . . .#) − f(# . . . i#)) + (f(# . . .#) − f(# . . .#j)).

Obviously, in this approximation we ignore the interaction between the fixed posi-

tions in H . In fact, the difference between the actual value of f(H) and the above

approximation is exactly the partition coefficient of H = # . . .#ij:

f(# . . .#ij) = ε(# . . .#) + ε(# . . . i#) + ε(# . . .#j) + ε(# . . .#ij).

Since ε(# . . .#) = f(# . . .#), rearranging the terms in the general partition equa-

tion yields for any schema H ,

ε(H) = f(H) −
∑

H′�H

ε(H ′).

In order to recover the original fitness function from the partition coefficients, we

will need the following two results of Mason (see [57] for more details):
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Theorem VI.1. For any h0, . . . , hi−1, hi+1, . . . , h�−1 ∈ Σ ∪ {#},∑
a∈Σ

ε(h�−1 . . . hi+1ahi−1 . . . h0) = 0.

Theorem VI.2. If there exists ε(·) satisfying theorem VI.1, then the general parti-

tion equation is satisfied for the fitness values

f(s) =
∑
s∈H

ε(H).

Theorem VI.1 shows that the partition coefficients are not independent of each other.

We will consider a minimal collection of partition coefficients which generates the

set of all partition coefficients and, which, by theorem VI.2, also permits to recover

the original fitness function. This minimal set will consist of the so-called general

Walsh coefficients .

We proceed as follows. Denote by Σ′ the alphabet Σ augmented with the “don’t

care” symbol #, and consider the function β which associates with any schema

H = h�−1 . . . h0 ∈ (Σ′ \ {0})� the string β(H) = β�ββ −1 . . . β0 ∈ Σ�, with

βiββ =

⎧⎨⎧⎧⎩⎨⎨0 if hi = #,

hi otherwise.

For example, if n = 3 we have that β(21#) = 2103 = 21.

With each of these n� schemata H or, equivalently, the associated values β(H), we

associate a Walsh coefficient

wH = wβ(H) = n
�
2 ε(H).

(Note that H �=�� H ′ if and only if β(H) �=�� β(H ′), since we restrict to schemata

H, H ′ ∈ (Σ′ \ {0})�.) For example, the Walsh coefficient associated to the schema

H = 21# over a ternary alphabet is

w21 = w2103 = wβ(21#) = 3
3
2 ε(21#).

We will also need the values vH = vβ(H) = n− �
2 wβ(H), which, since they only differ

from the “correct” Walsh coefficients by a constant factor, will be referred to as

Walsh coefficients as well.
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We may now define recursively, for any schema H = h�−1 . . . h0 ∈ Σ′�, the value

v(H) (or v�(H) if ambiguity arises) by

v(H) =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
(−1)o(H)vβ(H) if H ∈ (Σ′ \ {0})�∑
a∈{1,...,n−1}

−v(h�−1 . . . hi+1ahi−1 . . . h0) if hi = 0,

where o(H) denotes the order of H . The value ε(H) is then given by

ε(H) = v(H).

The function v satisfies the condition of theorem VI.1 and, by theorem VI.2, the

general partition equation holds, i.e.,

f(s) =
∑
s∈H

v(H).

It thus follows that the original function f may be reconstructed when the Walsh

coefficients v(H) are known.

Let us give some examples. For n = 3 and � = 1 the connection between the

schemata and the Walsh coefficients is given by

H v(H)

# v0

0 v1 + v2

1 −v1

2 −v2

and for n = 3 and � = 2

H v(H) H v(H)

## v0 1# −v3

#0 v1 + v2 10 −v4 − v5

#1 −v1 11 v4

#2 −v2 12 v5

0# v3 + v6 2# −v6

00 v4 + v5 + v7 + v8 20 −v7 − v8

01 −v4 − v7 21 v7

02 −v5 − v8 22 v8
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It is clear that there exists a unique matrix W � (or W n,�, if we want to be more

precise) such that for any fitness function f , we have f = W �w, where f is the

vector associated with f , as before, and where the vector w = t(w0, . . . , wn�−1)

consists of its Walsh coefficients.

If we denote by V n,� the matrix given by V n,� = n
�
2 W n,�, the matrices that corres-

pond to the previous examples are

V 3,1 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1 1 1

1 −1 0

1 0 −1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
and

V 3,2 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1 1 1 1 1 1 1 1 1

1 −1 0 1 −1 0 1 −1 0

1 0 −1 1 0 −1 1 0 −1

1 1 1 −1 −1 −1 0 0 0

1 −1 0 −1 1 0 0 0 0

1 0 −1 −1 0 1 0 0 0

1 1 1 0 0 0 −1 −1 −1

1 −1 0 0 0 0 −1 1 0

1 0 −1 0 0 0 −1 0 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

respectively. Note that for an alphabet of size n, we have

W n,1 = n− 1
2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 1 . . . 1

1
... −In−1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

where In−1 is the identity matrix of dimensions n − 1 × n − 1. In particular, W n,1

is a symmetric matrix. Note that W 2,1 = n− 1
2 ( 1 1

1 −1 ) = W 1, the “ordinary” Walsh

matrix defined in section 1.3, chapter IV.

Note also that W 3,2 = W 3,1 ⊗ W 3,1 = W⊗2
3,1. This result remains valid in the

general case:
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Lemma VI.3. For every positive integer �, we have

W n,� = W⊗�
n,1.

Proof. Firstly, we will prove that W n,2 = W⊗2
n,1. In fact, with a, b �= 0, we have��

v(##) = (−1)o(##)vβ(##) = v0,

v(#b) = (−1)o(#b)vβ(#b) = −vb,

v(#0) = −
n−1∑
b=1

v(#b) = v1 + · · · + vn−1,

v(a#) = (−1)o(a#)vβ(a#) = −van,

v(0#) = −
n−1∑
a=1

v(a#) = vn + v2n + . . . v(n−1)n,

v(ab) = (−1)o(ab)vβ(ab) = van+b,

v(a0) = −
n−1∑
b=1

v(ab) = −
n−1∑
b=1

van+b,

v(0b) = −
n−1∑
a=1

v(ab) = −
n−1∑
a=1

van+b,

and

v(00) = −
n−1∑
a=1

v(a0) =

n−1∑
a,b=1

v(ab) =

n−1∑
a,b=1

van+b.

So, taking into account these expressions and the fact that

f(ab) =
∑
ab∈H

v(H) = v(##) + v(#b) + v(a#) + v(ab),

we obtain for all a, b �= 0, that��
f(ab) = v0 − vb − van + van+b

and

f(a0) =
∑
a0∈H

v(H) = v(##) + v(#0) + v(a#) + v(a0)

=
n−1∑
i=0

vi −
n−1∑
i=0

van+i.
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It follows that

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f(a0)

...

f(a(n − 1))

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
v0 + v1 + · · · + vn−1

v0 − v1

...

v0 − vn−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟−

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
van + van+1 + · · · + van+(n−1)

van − van+1

...

van − van+(n−1)

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= W n,1

⎡⎢⎡⎡⎢⎣
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

w0

...

wn−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟−

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
wan

...

wan+(n−1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎤⎥⎤⎤⎥⎦ .

On the other hand, as for all b �= 0,��

f(0b) =

n−1∑
i=0

vin −
n−1∑
i=0

vin+b

and

f(00) =

n−1∑
i,j=0

vin+j,

we obtain that

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f(00)

...

f(0(n − 1))

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
v0 + v1 + · · · + vn2−1

(v0 − v1) + (vn − vn+1) + · · · + (vn(n−1) − vn(n−1)+1)
...

(v0 − vn−1) + (vn − vn+(n−1)) + · · · + (vn(n−1) − vn(n−1)+(n−1))

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= W n,1

⎡⎢⎡⎡⎢⎣
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

w0

...

wn−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟+

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
wn

...

w2n−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟+ · · · +

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
w(n−1)n

...

wn2−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎤⎥⎤⎤⎥⎥⎥⎦ .

This proves that W n,2 = W⊗2
n,1.

In the general case, the first Walsh coefficient w0 is essentially the average of the

fitness function. The coefficients w1, . . . , wn�−1−1 represent the contributions of the

schemata #h�−2 . . . h0 and the coefficients wan�−1 to w(a+1)n�−1−1 represent the con-
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tributions of the schemata ah�−2 . . . h0, for a ∈ {1, . . . , n − 1}. Then, as

f(as�−2s�−3 . . . s0) =
∑

as�−2...s0∈H

v(H)

=
∑

s�−2s�−3...s0∈H′

v(#H ′) +
∑

s�−2s�−3...s0∈H′

v(aH ′)

for all a �= 0, and��

f(0s�−2s�−3 . . . s0) =
∑

0s�−2...s0∈H

v(H)

=
∑

s�−2s�−3...s0∈H′

⎧⎨⎧⎧⎩⎨⎨v(#H ′) −
∑

s�−2s�−3...s0∈H′

v(aH ′)

⎫⎬⎫⎫⎭⎬⎬ ,

where v(#H ′) and v(aH ′), a �= 0, are given recursively by��

v�(#H ′) =

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
(−1)o(H′) · vβ(H′) if H ′ ∈ (Σ′ \ {0})�−1∑
b∈{1,...,n−1}

−v(#h�−2 . . . hi+1bhi−1 . . . h0) if hi = 0,

= v�−1(H
′)

and

v�(aH ′) =

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
(−1)o(aH′) · van�−1+β(H′) if H ′ ∈ (Σ′ \ {0})�−1∑
b∈{1,...,n−1}

−v(ah�−2 . . . hi+1bhi−1 . . . h0) if hi = 0

= −

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
(−1)o(H′) · van�−1+β(H′) if H ′ ∈ (Σ′ \ {0})�−1

−
∑

b∈{1,...,n−1}
(−1)o(H′) · van�−1+β(h�−2...hi+1bhi−1...h0) if hi = 0,

respectively, we thus see that⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
f0ff ...0

...

f0(ff n−1)...(n−1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ = W n,�−1 ·

⎡⎢⎡⎡⎢⎣
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

w0

...

wn�−1−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟+

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
wn�−1

...

w2n�−1−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟+ · · · +

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
w(n−1)n�−1

...

wn�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎤⎥⎤⎤⎥⎦

and ⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
faff 0...0

...

faff (n−1)...(n−1)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ = W n,�−1 ·

⎡⎢⎢⎢⎢⎣
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

w0

...

wn�−1−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟−

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
wan�−1

...

w(a+1)n�−1−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎤⎥⎥⎥⎥⎦ ,
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for all a ∈ {1, . . . , n−1} and so, it follows that W n,� = W n,�−1 ⊗W n,1 = W⊗�
n,1.

To calculate the epistasis of a function f in terms of its Walsh coefficients, we will

use the recursion relation

Gn,� = Un,1 ⊗ Gn,�−1 + (Gn,1 − Un,1) ⊗ Un,�−1.

We find that

tW n,�Gn,�W n,� = A + B

with

A = tW n,�(Un,1 ⊗ Gn,�−1)W n,�

B = tW n,� ((Gn,1 − Un,1) ⊗ Un,�−1) W n,�.

In order to calculate A, note that

tW n,�W n,� = (tW n,1 ⊗ tW n,�−1)(W n,1 ⊗ W n,�−1)

= (tW n,1W n,1) ⊗ (tW n,�−1W n,�−1)

= (W n,1W n,1)
⊗�

and

W n,1W n,1 = n− 1
2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 1 . . . 1

1
... −In−1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟n− 1
2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 1 . . . 1

1
... −In−1

1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= n−1

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . . . . 0

0 2 1 . . . 1
.
. 1 2
.. . . .

...
...

...
. . .

. . . 1

0 1 . . . 1 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.
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This permits us to calculate

tW n,1Gn,1W n,1 = n tW n,1In,1W n,1

=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . . . . 0

0 2 1 . . . 1
.
. 1
.. . . .

. . .
...

...
...

. . .
. . . 1

0 1 . . . 1 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
.

On the other hand, we have

tW n,�Un,�W n,� = (tW n,1 ⊗ tW n,�−1)(Un,1 ⊗ Un,�−1)(W 1 ⊗ W n,�−1)

= (tW n,1Un,1W n,1) ⊗ (tW n,�−1Un,�−1W n,�−1)

= (W n,1Un,1W n,1)
⊗�

= n�

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ ,

since

W n,1Un,1W n,1 = W n,1 · n− 1
2

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
n 0 . . . 0
...

...
. . .

...

n 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

These preliminary calculations allow us to compute the matrix A:

A = tW n,�(Un,1 ⊗ Gn,�−1)W n,�

= (tW n,1 ⊗ tW n,�−1)(Un,1 ⊗ Gn,�−1)(W n,1 ⊗ W n,�−1)

= (tW n,1Un,1W n,1) ⊗ (tW n,�−1Gn,�−1W n,�−1)

=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟⊗ (tW n,�−1Gn,�−1W n,�−1).
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The matrix B may be calculated as follows:

B = tW n,� ((Gn,1 − Un,1) ⊗ Un,�−1) W n,�

= tW n,1((Gn,1 − Un,1)W n,1) ⊗ (tW n,�−1Un,�−1W n,�−1)

= (W n,1Gn,1W n,1 − W n,1Un,1W n,1) ⊗ tW n,�−1Un,�−1W n,�−1

=

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . . . . 0

0 2 1 . . . 1
.
. 1. . . .

. . .
...

...
...

. . .
. . . 1

0 1 . . . 1 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
−

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n�−1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0 0 . . . . . . 0

0 2 1 . . . 1
.
. 1
.. . . .

. . .
...

...
...

. . .
. . . 1

0 1 . . . 1 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⊗

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n�−1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Combining the previous results yields an expression for tW n,�Gn,�W n,�. On the

other hand, as f = W n,�w, we find

tfGn,�f = t(W n,�w)Gn,�(W n,�w)

= tw(tW n,�Gn,�W n,�)w,

and we obtain:

Lemma VI.4. Let f be a fitness function defined on Ωn and denote by w0, . . . , wn�−1

its Walsh coefficients. Then

tfGn,�f = n�w2
0 + 2n�−1

�−1∑
i=0

⎛⎜⎛⎛⎝⎜⎜ n−1∑
p,q=1
p≤q

wpniwqni

⎞⎟⎞⎞⎠⎟⎟.
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Proof. For � = 1, we find that

tw(tW n,1Gn,1W n,1)w = n tw(W 1W 1)w

= (w0, . . . , wn−1)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . . . . 0

0 2 1 . . . 1
.
. 1
.. . . .

. . .
...

...
...

. . .
. . . 1

0 1 . . . 1 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

w0

...

wn−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

= nw2
0 + 2

n−1∑
p,q=1
p≤q

wpwq.

We prove the general case by induction on �. First, note that

(w0, . . . , wn�−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟⊗ (
tW n,�−1Gn,�−1W n,�−1

)
⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

w0

...

wn�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

= n(w0, . . . , wn�−1−1)
(

tW n,�−1Gn,�−1W n,�−1

)⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
w0

...

wn�−1−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

= n

⎡⎢⎡⎡⎣n�−1w2
0 + 2n(�−1)−1

(�−1)−1∑
i=0

⎛⎜⎛⎛⎝⎜⎜ n−1∑
p,q=1
p≤q

wpniwqni

⎞⎟⎞⎞⎠⎟⎟
⎤⎥⎤⎤⎦

= n�w2
0 + 2n�−1

�−2∑
i=0

⎛⎜⎛⎛⎝⎜⎜ n−1∑
p,q=1
p≤q

wpniwqni

⎞⎟⎞⎞⎠⎟⎟ .
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On the other hand, we also have

(w0, . . . , wn�−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0 0 . . . . . . 0

0 2 1 . . . 1
.
. 1
.. . . .

. . .
...

...
...

. . .
. . . 1

0 1 . . . 1 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⊗

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n�−1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

w0

...

wn�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

= (w0, wn�−1 . . . , w(n−1)n�−1)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0 0 . . . . . . 0

0 2n�−1 n�−1 . . . n�−1

... n�−1 . . .
. . .

...
...

...
. . .

. . . n�−1

0 n�−1 . . . n�−1 2n�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
w0

wn�−1

...

w(n−1)n�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= n�−1(wn�−1 , . . . , w(n−1)n�−1)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
2 1 . . . 1

1
. . .

. . .
...

...
. . .

. . . 1

1 . . . 1 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

w�−1
n
...

w(n−1)n�−1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

= 2n�−1
n−1∑

p,q=1
p≤q

wpn�−1wqn�−1.

Combining these results, i.e., applying the remarks preceding the statement of the

present result, we now indeed obtain:

w(tW n,�Gn,�W n,�)w = n�w2
0 + 2n�−1

�−2∑
i=0

⎛⎜⎛⎛⎝⎜⎜ n−1∑
p,q=1
p≤q

wpniwqni

⎞⎟⎞⎞⎠⎟⎟

+ 2n�−1
n−1∑

p,q=1
p≤q

wpn�−1wqn�−1

= n�w2
0 + 2n�−1

�−1∑
i=0

⎛⎜⎛⎛⎝⎜⎜ n−1∑
p,q=1
p≤q

wpniwqni

⎞⎟⎞⎞⎠⎟⎟.
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It remains to calculate the norm of f (or of its associated vector f) in terms of its

Walsh coefficients. This may be done as follows:

tff = t(W n,�w)(W n,�w)

= tw(tW n,�W n,�)w

= tw(tW⊗�
n,1W

⊗�
n,1)w

= tw(W n,1W n,1)
⊗�w

= n−� tw

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . . . . 0

0 2 1 . . . 1
.
. 1
.. . . .

. . .
...

...
...

. . .
. . . 1

0 1 . . . 1 2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

⊗�

w.

The explicit expression of the epistasis of some fitness function f in terms of the asso-

ciated Walsh coefficients now trivially follows by combining the previous calculation

with lemma VI.4.

1.2 Second generalization to the multary case

As we saw in chapter IV, the Walsh coefficients of a fitness function f may be intro-

duced in terms of partition coefficients, or as a kind of discrete Fourier transform.

In the previous section, we have shown that the first approach functions in the mul-

tary case as well, although it does not lead to an elegant expression for ε∗(f). In

the present section we introduce a second generalization of the Walsh transform,

inspired by the Fourier-like approach in the binary setting. We will show that this

one does allow for an elegant description of normalized epistasis.

Just as in the binary case, the whole set-up essentially reduces to recursively defining

a suitable transformation matrix W . In view of the fact that we will have to use

the n-th roots of unity e
2π
n

i (and not just the square roots of unity +1 and −1 as

in the binary case) it should come as no surprise that the transformation matrices

used in the multary case are actually complex.
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Let us therefore assume r to be a primitive root of unity, i.e., r = e
2π
n

i = cos(2π
n

) +

i sin(2π
n

). We define the set of complex vectors {v0, v1, . . . , vn−1} by putting

vk = t
(
1, rk, r2k, . . . , r(n−1)k

) ∈ Cn

for all 0 ≤ k < n. Let us denote by V n,1 the symmetric n-dimensional complex

matrix given by

V n,1 = (v0v1 . . .vn−1) .

For small values of n, we have V 1,1 = (1) and

V 2,1 =

(
1 1

1−1

)
∈ M2MM (C), V 3,1 =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1 1 1

1 r r2

1 r2 r

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ∈ M3MM (C),

where r = −1
2

+ i
√

3
2

.

Let us put V n,� = V ⊗�
n,1, for any positive integer �.

Lemma VI.5. For any positive integer �, we have

V n,�V n,� = n�In,�,

where In,� is the identity matrix of dimension n� and where V n,� denotes the con-

jugate complex matrix of V n,�.

Proof. The assertion is true for � = 1 because

(V n,1V n,1)ij =
n−1∑
k=0

rn−ikrjk =
n−1∑
k=0

rk(j−i) =

⎧⎨⎧⎧⎩⎨⎨n if i = j

0 otherwise.

The general case follows from a straightforward induction argument on �, using the

previous result:

V n,�V n,� = V ⊗�
n,1V

⊗�
n,1 =

(
V

⊗(�−1)
n,1 ⊗ V n,1

)(
V

⊗(�−1)
n,1 ⊗ V n,1

)
=
(
V n,�−1 ⊗ V n,1

)
(V n,�−1 ⊗ V n,1)

=
(
V n,�−1V n,�−1

)⊗ (
V n,1V n,1

)
= n�−1In,�−1 ⊗ nIn,1 = n�In,�.
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We now define the complex Walsh functions as ψt(s) = rs·t, where s · t denotes the

pointwise product of s and t.

In order to prepare for the calculation of normalized epistasis in terms of generalized

Walsh coefficients, let us first prove:

Lemma VI.6. For any positive integer �, we have

V n,�Un,�V n,� = n2�

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...
...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Proof. Let us again argue by induction on �. The statement holds true for � = 1,

because

V n,1Un,1V n,1 =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 1 . . . 1

1 rn−1 . . . r
...

...
. . .

...

1 r . . . rn−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜

1 1 . . . 1

1 r . . . rn−1

...
...

. . .
...

1 rn−1 . . . r(n−1)2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n2 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .
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Now, assume the assertion to hold true up to � − 1 and let us prove it for �. Then

V n,�Un,�V n,� = (V ⊗�
n,1)Un,�(V

⊗�
n,1)

=
(
V

⊗(�−1)
n,1 ⊗ V n,1

)
(Un,�−1 ⊗ Un,1)

(
V

⊗(�−1)
n,1 ⊗ V n,1

)
=
(
V n,�−1Un,�−1V n,�−1

)⊗ (
V n,1Un,1V n,1

)

= n2(�−1)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟⊗ n2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= n2�

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

We may now prove:

Lemma VI.7. With notations as before, we have:

V n,�Gn,�V n,� = Dn,�,

where Dn,� is the diagonal matrix whose only non-zero diagonal entries dii have

value n2� and are situated at i = knj, for values 0 ≤ k < n and 0 ≤ j < �.

Proof. Using the recursion relation

Gn,� = Un,1 ⊗ Gn,�−1 + (Gn,1 − Un,1) ⊗ Un,�−1,

we can write

V n,�Gn,�V n,� = A + B,

where

A = V n,� (Un,1 ⊗ Gn,�−1) V n,�
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and

B = V n,� ((Gn,1 − Un,1) ⊗ Un,�−1) V n,�.

Let us now calculate these matrices A and B. First, using the fact that

V n,� = V n,1 ⊗ V n,�−1,

we note that

A =
(
V n,1 ⊗ V n,�−1

)
(Un,1 ⊗ Gn,�−1) (V n,1 ⊗ V n,�−1)

=
(
V n,1Un,1V n,1

)⊗ (
V n,�−1Gn,�−1V n,�−1

)

= n2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟⊗ (
V n,�−1Gn,�−1V n,�−1

)

= n2

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
V n,�−1Gn,�−1V n,�−1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

On the other hand,

B =
(
V n,1 ⊗ V n,�−1

)
((Gn,1 − Un,1) ⊗ Un,�−1) (V n,1 ⊗ V n,�−1)

=
(
V n,1(Gn,1 − Un,1)V n,1

)⊗ (
V n,�−1Un,�−1V n,�−1

)
=
(
nV n,1V n,1 − V n,1Un,1V n,1

)⊗ (
V n,�−1Un,�−1V n,�−1

)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣n2In,1 −

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n2 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⊗ n2(�−1)

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟

= n2�

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
0 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟⊗

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

Using this, another straightforward induction argument finishes the proof.
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By analogy with the binary case, we define the (generalized) Walsh transform w of f

by w = W n,�f , with W n,� = n− �
2 V n,�. The (complex!) components wi = wi(f) of

w will be called Walsh coefficients of f . These coefficients, of course, easily permit

to recover f , since it follows from W n,�W n,� = In,� that

f = W n,�(W n,�f) = W n,�w.

In particular, we have for any s ∈ Ωn that

f(s) = n− �
2

∑
t∈Ωn

ψt(s)wt = n− �
2

∑
t∈Ωn

ψt(s)wt.

Of course, ψt(s) = r−s·t = ψ−t(s).

We may now prove:

Proposition VI.8. If w0, . . . , wn�−1 are the Walsh coefficients of the fitness function

f , then the normalized epistasis ε∗(f) of f is given by

ε∗(f) = 1 −
|w0|2 +

�−1∑
i=0

n−1∑
k=1

|wkni|2

n�−1∑
i=0

|wi|2
.

Proof. Since f = W n,�w = W n,�w, we obtain that

tff = t(W n,�w)W n,�w = twW n,�W n,�w = tww,

as W n,� is symmetric and W n,�W n,� = In,�.

On the other hand,

tfEn,�f =
1

n�
t(W n,�w)Gn,�W n,�w =

1

n2�
twDn,�w.

It thus follows that

ε∗(f) = 1 −
tfEn,�f

tff
= 1 −

twDn,�w

n2� tww

and this equals

1 −
|w0|2 +

�−1∑
i=0

n−1∑
k=1

|wkni|2

n�−1∑
i=0

|wi|2
.
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It appears that calculating epistasis by using the complex Walsh transform is far

more easy than through the use of the “natural” Walsh transform. Of course, when

the partition coefficients of a given fitness function are known, this is no longer true.

Moreover, in many practical applications one is really interested in knowing exactly

or, at least, being able to calculate these partition coefficients.

In view of these remarks, it makes sense to try and find a method of directly trans-

lating one transform into the other.

Consider a fitness function f with associated “natural” and complex Walsh coeffi-

cients wnat and wc, respectively. Denoting by W nat
n,� and W c

n,� the natural complex

Walsh matrix, respectively, we obtain

wc = W c
n,�f

= W c
n,�(W

nat
n,� wnat)

= (W c
n,�W

nat
n,� )wnat

= (W c
n,1W

nat
n,1 )⊗�wnat,

where

W c
n,1W

nat
n,1 = n−1

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
n 0 . . . 0

0 1 − r . . . 1 − rn−1

...
...

. . .
...

0 1 − r(n−1) . . . 1 − r(n−1)2

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
i.e.,

(W c
n,1W

nat
n,1 )ij =

⎧⎪⎧⎧⎨⎪⎪⎪⎨⎨⎩⎪⎪
1 if i = j = 0

1 − rij

n
otherwise.

2 Examples

In this section we describe some examples which illustrate how the previous results

may be applied in order to effectively calculate the epistasis of some given fitness

function.
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2.1 Minimal epistasis

As we pointed out in chapters II and V, an arbitrary fitness function f has ε∗(f) = 0

if and only if f is of the form

f(s�−1 . . . s0) =
�−1∑
i=0

gi(si),

for some real-valued functions gi which only depend on one position. Let us show

how our approach allows for an easy proof of this result.

From the expression of normalized epistasis in terms of generalized (complex) Walsh

coefficients, it follows that ε∗(f) = 0 is equivalent to wj = 0 for all j �= 0�� , kni with

1 ≤ k < n and 0 ≤ i < �. So,

wkni = n− �
2

∑
t∈Ωn

rkni·tf(t) = n− �
2

∑
t∈Ωn

rktif(t)

= n− �
2

⎛⎝⎛⎛ ∑
t∈Ωn(i,0)

f(t) +
∑

t∈Ωn(i,1)

rkf(t) + · · · +
∑

t∈Ωn(i,n−1)

rk(n−1)f(t)

⎞⎠⎞⎞

= n
�
2
−1

n−1∑
j=0

rkjf(i,j), (VI.1)

where Ωn(i, j) consists of all s ∈ Ωn with si = j and f(i,j) = 1
n�−1

∑
t∈Ωn(i,j) f(t) for

all 0 ≤ i < � and 0 ≤ j < n.
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It thus follows that ε∗(f) = 0 is equivalent to

f(s) = n− �
2

∑
t∈Ωn

ψt(s)wt

= n− �
2

∑
t∈Ωn

r−s·twt

= n− �
2

(
w0 +

�−1∑
i=0

n−1∑
k=1

r−s·kni

wkni

)

= n− �
2

(
w0 +

�−1∑
i=0

n−1∑
k=1

r−ksiwkni

)

= n− �
2

�−1∑
i=0

(
w0

�
+

n−1∑
k=1

r−ksiwkni

)

=
�−1∑
i=0

hi(si),

where

hi(si) = n− �
2

(
w0

�
+

n−1∑
k=1

r−ksiwkni

)
∈ C,

for all i. Actually,

f(s) =

�−1∑
i=0

hi(si) =

�−1∑
i=0

hi(si) ∈ R,

so, f(s) =
∑�−1

i=0 gi(si), with

gi(si) =
1

2

(
hi(si) + hi(si)

)
= n− �

2

[
w0

�
+

1

2

n−1∑
k=1

(
r−ksiwkni + rksiwkni

)]

= n− �
2
w0

�
+

1

2n

n−1∑
k=1

(
n−1∑
j=0

(
rk(j−si) + rk(si−j)

)
f(i,j)

)

= n− �
2
w0

�
+

1

n

n−1∑
k=1

n−1∑
j=0

(
cos

2k(j − si)π

n

)
f(i,j),

which clearly belongs to R.
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On the other hand, as

f(i,a) =
1

n�−1

∑
t∈Ωn(i,a)

f(t) =
1

n�−1

∑
t∈Ωn(i,a)

�−1∑
j=0

gjg (tj)

=
1

n�−1

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜n�−1gi(a) +

�−1∑
j=0
j 	=		 i

∑
b∈Σ

n�−2gjg (b)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
= gi(a) +

1

n

�−1∑
j=0
j 	=		 i

∑
b∈Σ

gjg (b),

we can rewrite the first order Walsh coefficients wkni, for all 0 ≤ k < n and 0 ≤ i < �,

as

wkni = n
�
2
−1
∑
a∈Σ

rkaf(i,a) = n
�
2
−1
∑
a∈Σ

rka

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜gi(a) +
1

n

�−1∑
j=0
j 	=		 i

∑
b∈Σ

gjg (b)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
= n

�
2
−1
∑
a∈Σ

rkagi(a),

because

∑
a∈Σ

rka

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜ �−1∑
j=0
j 	=		 i

∑
b∈Σ

gjg (b)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜ �−1∑
j=0
j 	=		 i

∑
b∈Σ

gjg (b)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ·
∑
a∈Σ

rka = 0.

Moreover, with this notation, the average of a first order function is given by

w̃0 =
1

n�

∑
t∈Ωn

f(t) =
1

n�

∑
t∈Ωn

(
�−1∑
i=0

gi(ti)

)

=
1

n�

�−1∑
i=0

n�−1
∑
a∈Σ

gi(a)

=
1

n

∑
0≤j<�
a∈Σ

gi(a),

and all other Walsh coefficients are zero, as we just pointed out.
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2.2 Generalized camel functions

Let us start by considering the canonical basis

{
e0, e n�

n−1

, . . . , e
k n�−1

n−1

, . . . , en−1

}
of

Rn�

, i.e.,

e
k n�−1

n−1

= t(0, . . . , 0, 1, 0, . . . , 0)

where 1 appears as k n�−1
n−1

-th coordinate, for 0 ≤ k < n. If we inductively define the

set of complex vectors
{
v0,�, . . . , vn�−1,�

}
in Cn�

by putting vk,0 = 1 for all k and,

inductively,

vk,� =

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
vk,�−1

rkvk,�−1

r2kvk,�−1

...

r(n−1)kvk,�−1

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟
,

then V n,�ek n�−1
n−1

= v
k n�−1

n−1
,�
, for all 0 ≤ k < n.

Let us now consider generalized camel functions, i.e., functions f with the property

that they are zero everywhere except for f(c0) = f(c1) = · · · = f(cn−1) =
√

n
√√
n

, where

c0, c1, . . . , cn−1 form a set of strings in Ωn which are at pairwise Hamming distances

of � from each other. In order to calculate their normalized epistasis, we may assume

c0 = 0 and so ck = k n�−1
n−1

, with 1 ≤ k < n. Then, with the notations of section 3.2,

chapter V, the vector associated to f is

q
0,...,k n�−1

n−1
,...,(n�−1)

= n− 1
2

n−1∑
k=0

e
k n�−1

n−1

,

and the complex Walsh coefficients of f are given by

w = W n,�f = W n,�q0,...,k n�−1
n−1

,...,(n�−1)
= n− 1

2 W n,�

n−1∑
k=0

e
k n�−1

n−1

= n− (�+1)
2

n−1∑
k=0

V n,� e
k n�−1

n−1

= n− (�+1)
2

n−1∑
k=0

v
k n�−1

n−1
,�
.

One may thus verify, for example through an induction argument, that wkni = 0 for

all 1 ≤ k < n and 0 ≤ i < �.
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As w0 = n
−�+1

2 and tww = tff = ‖f‖2 = 1, we finally have that

ε∗(f) = 1 − 1

n�−1
,

as claimed in chapter V.

2.3 Generalized unitation functions

As a final example, we consider generalized unitation functions. Recalling their

definition given in section 4 of chapter V, these are fitness functions f with the

property that f(s) =
∑n−1

i=0 gi(ui(s)) for some functions gi on {0, . . . , � − 1} and

where ui(s) denotes, for any s ∈ Ωn, the number of i’s in the n-ary representation

of s. Since for any permutation σ(s) of s we obviously have f(s) = f(σ(s)), it is

clear that fi,jff is independent of i. From the definition of wkni, it follows that

wk = wkn = wkn2 = · · · = wkn�−1.

In order to give a general expression for fi,jff , let us consider the case n = 3 and then

deduce the formula for the general case. Let us start with

fi,ff 0 =
1

3�−1

∑
s∈Ω3(0,0)

f(s) =
1

3�−1

∑
s∈Ω3(0,0)

(g0(u0) + g1(u1) + g2(u2)) ,

with ui = ui(s), for i = 0, 1, 2.

If we take any 0 ≤ a ≤ � and 0 ≤ b ≤ �− a, then it is clear that there are
(

�−1
a−1

)(
�−a

b

)
strings in Ω3(0, 0) with u0 = a, u1 = b and u2 = � − a − b. This yields that

fi,ff 0 =
1

3�−1

∑
s∈Ω3(0,0)

f(s)

=
1

3�−1

∑
u0,u1,u2

u0+u1+u2=�

(
� − 1

u0 − 1

)(
� − u0

u1

)
(g0(u0) + g1(u1) + g2(u2))

Of course, the same argument shows that

fi,ff 1 =
1

3�−1

∑
s∈Ω3(0,1)

f(s)

=
1

3�−1

∑
u0,u1,u2

u0+u1+u2=�

(
� − 1

u1 − 1

)(
� − u1

u2

)
(g0(u0) + g1(u1) + g2(u2))
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and

fi,ff 2 =
1

3�−1

∑
s∈Ω3(0,2)

f(s)

=
1

3�−1

∑
u0,u1,u2

u0+u1+u2=�

(
� − 1

u2 − 1

)(
� − u2

u0

)
(g0(u0) + g1(u1) + g2(u2)) .

So, if k = 1, 2, we have that

wk3i = 3−
�
2

∑
u0,u1,u2

u0+u1+u2=�

{(
� − 1

u0 − 1

)(
� − u0

u1

)
+ rk

(
� − 1

u1 − 1

)(
� − u1

u2

)

+r2k

(
� − 1

u2 − 1

)(
� − u2

u0

)}
(g0(u0) + g1(u1) + g2(u2)) .

In the general case, we find

wkni = n− �
2

∑
u0,...,un−1

u0+···+un−1=�

αk
u0...un−1

n−1∑
i=0

gi(ui)

with

αk
u0...un−1

=
n−1∑
i=0

rki

(
� − 1

ui − 1

)(
� − ui

ui+1

)
. . .

(
� − ui − ui+1 − · · · − ui+n−3

ui+n−2

)
,

where we work with coefficients modulo n.

On the other hand, note that

w0 = n−�
∑

s∈Ωn,�

f(s) = n−�
∑

u0,...,un−1
u0+···+un−1=�

∑
s∈Ωn,�

ui(s)=ui

f(s).

Since f is a unitation function,

w0 = n−�
∑

u0,...,un−1
u0+···+un−1=�

(
�

u0

)(
� − u0

u1

)
. . .

(
� − u0 − · · · − un−3

un−2

) n−1∑
i=0

gi(ui).

The normalized epistasis of f is thus finally given by

ε∗(f) = 1 −
|w0|2 + �

n−1∑
k=1

|wk|2

n�−1∑
i=0

|wi|2
,

with coefficients as above.
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2.4 Second order functions

Early in this book, equation I.4 defined the class of second order functions as those

f with the functional form

f : {0, 1}� → R : s �→��
∑

0≤i<�

gi(si) +
∑

0≤i<j<�

gij(si, sj),

where the gi and gij are real valued functions that depend on only one and only

two variables, respectively. In the multary setting, the class contains the binary

constraint satisfaction problem (defined in chapter I, section 6) as a large subclass.

Thanks to its simple functional form, it is not too difficult to compute the Walsh

coefficients and epistasis of a generic second order function. We will do so in this

section, following the results of [95], and use them in section 3.5 as an example of

the computation of the moments of schema fitness distributions.

To avoid having to include the normalization factor n
�
2 in most of what follows, we

work with modified Walsh coefficients w̃i = n− �
2 wi. So, the average of a second order

function f is

w̃0 =
1

n�

∑
s∈Ωn

f(s)

=
1

n�

∑
s∈Ωn

∑
0≤i<�

gi(si) +
1

n�

∑
s∈Ωn

∑
0≤i<j<�

gij(si, sj)

=
1

n

∑
a∈Σ

∑
0≤i<�

gi(a) +
1

n�

∑
a,b∈Σ

∑
0≤i<j<�

n�−2gij(a, b)

=
1

n

∑
a∈Σ

∑
0≤i<�

gi(a) +
1

n2

∑
a,b∈Σ

∑
0≤i<j<�

gij(a, b).

Note that because W (f +g) = Wf +Wg, the formal separation between the first

and the second order part of f is respected by the Walsh transform. This allows

us to calculate each of these components separately. In particular, we will denote

by f (1) and f (2) the first and second order part of f , respectively, i.e., we write

f = f (1) + f (2).

In order to calculate the Walsh coefficients wkni (also called the first order Walsh

coefficients), we need the average of the fitness value over the strings with a fixed
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bit a at position i for f (2):

f
(2)
(i,a) =

1

n�−1

∑
t∈Ωn(i,a)

f (2)(t) =
1

n�−1

∑
t∈Ωn(i,a)

∑
0≤j<k<�

gjkg (tj , tk)

=
1

n�−1

[ ∑
0≤p<i<�

∑
c∈Σ

n�−2gpig (c, a) +
∑

i<q<�

∑
d∈Σ

n�−2giq(a, d)

+
∑

0≤p<q<�
p,q 	=		 i

∑
c,d∈Σ

n�−3gpqg (c, d)

]

=
1

n

∑
0≤p<i<�

c∈Σ

gpig (c, a) +
1

n

∑
i≤q<�
d∈Σ

giq(a, d) +
1

n2

∑
0≤p<q<�

p,q 	=		 i

∑
c,d∈Σ

gpqg (c, d).

Since section 2.1 already gave the coefficients for f (1), it remains to use the previous

equality and (VI.1) to calculate the coefficients of f (2):

w̃kni(f (2)) =n− �
2 wkni(f (2)) =

1

n

∑
a∈Σ

rkaf
(2)
(i,a)

=
1

n2

∑
a∈Σ

rka

⎡⎢⎣ ∑
0≤p<i<�

c∈Σ

gpig (c, a) +
∑

i<q<�
d∈Σ

giq(a, d)

⎤⎥⎦

+
1

n3

∑
a∈Σ

rka

⎡⎢⎢⎢⎢⎣⎢⎢ ∑
0≤p<q<�

p,q 	=		 i

∑
c,d∈Σ

gpqg (c, d)

⎤⎥⎥⎦⎥⎥

=
1

n2

∑
a∈Σ

rka

⎡⎢⎡⎡⎣ ∑
0≤p<i<�

c∈Σ

gpig (c, a) +
∑

i<q<�
d∈Σ

giq(a, d)

⎤⎥⎤⎤⎦ ,

because
∑

a∈Σ rka = 0.

Let us now calculate the second order Walsh coefficients wani+bnj . If t = ani + bnj ,
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then

w̃t = n− �
2 wt = n−�

∑
s∈Ωn

rtsf (2)(s) = n−�
∑
s∈Ωn

rasi+bsjf (2)(s)

= n−�
∑
c,d∈Σ

∑
s∈Ωn(ij,cd)

rac+bdf (2)(s)

= n−�
∑
c,d∈Σ

rac+bd
∑

s∈Ωn(ij,cd)

f (2)(s) =
1

n2

∑
c,d∈Σ

rac+bdf
(2)
(ij,cd),

where Ωn(ij, cd) denotes the subset of Ωn which contains all strings with alleles c

and d in loci i and j, respectively, and

f
(2)
(ij,ab) =

1

n�−2

∑
s∈Ωn(ij,ab)

f (2)(s)

= gij(a, b) +
1

n

∑
0≤p<i

∑
c∈Σ

gpig (c, a) +
1

n

∑
i<q<�
q 	=		 j

∑
d∈Σ

giq(a, d)

+
1

n

∑
0≤p<j

p 	=		 i

∑
c∈Σ

gpjg (c, b) +
1

n

∑
j<q<�

∑
d∈Σ

gjqg (b, d)

+
1

n2

∑
0≤p<q<�
p,q 	=		 i,j

∑
c,d∈Σ

gpqg (c, d).

Finally, as

1

n2

∑
c,d∈Σ

rac+bd

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜ 1

n

∑
i<q<�
q 	=		 j

∑
e∈Σ

giq(a, e)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =
1

n3

∑
c∈Σ

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜rac
∑

i<q<�
q 	=		 j

∑
e∈Σ

giq(a, e)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟∑
d∈Σ

rbd = 0,

(because
∑

d∈Σ rbd = 0) and, as all of the other double sums also vanish, we have

w̃ani+bnj(f (2)) =
1

n2

∑
c,d∈Σ

rac+bdf
(2)
(ij,cd)

=
1

n2

∑
c,d∈Σ

rac+bdgij(c, d).

Moreover, w̃ani+bnj(f (2)) = w̃ani+bnj(f) because, as we pointed out in section 2.1, the
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second order coefficients of first order functions are zero. In fact, for t = ani + bnj ,

w̃t(f
(1)) = n− �

2 wt = n−�
∑
s∈Ωn

rtsf (1)(s)

= n−�
∑
s∈Ωn

rasi+bsjf (1)(s)

= n−�
∑
c,d∈Σ

∑
s∈Ωn(ij,cd)

rac+bdf (1)(s)

= n−�
∑
c,d∈Σ

rac+bd
∑

s∈Ωn(ij,cd)

(
�−1∑
k=0

gk(s)

)

= n−�
∑
c,d∈Σ

rac+bd

⎡⎢⎡⎡⎢⎣⎢⎢n�−1gi(c) + n�−1gjg (d) +

�−1∑
p=0
p 	=		 i,j

n�−2
∑
e∈Σ

gpg (e)

⎤⎥⎤⎤⎥⎦⎥⎥
=

1

n

∑
c,d∈Σ

rac+bd (gi(c) + gjg (d)) +
1

n2

∑
c,d∈Σ

rac+bd
�−1∑
p=0
p 	=		 i,j

∑
e∈Σ

gpg (e) = 0,

because ∑
c,d∈Σ

rac+bd (gi(c) + gjg (d))

=
∑
c,d∈Σ

rac+bdgi(c) +
∑
c,d∈Σ

rac+bdgjg (d)

=
∑
c∈Σ

racgi(c)

(∑
d∈Σ

rbd

)
+
∑
d∈Σ

rbdgjg (d)

(∑
c∈Σ

rac

)
= 0.

The same argument yields that

1

n2

∑
c,d∈Σ

rac+bd
�−1∑
p=0
p 	=		 i,j

∑
e∈Σ

gpg (e) = 0.

As an example, let us now include the binary case (n = 2). With our notation,

w̃0(f) = w̃0(f
(1)) + w̃0(f

(2))

=
1

2

∑
0≤i<�

(gi(0) + gi(1)) +
1

4

∑
0≤i<j<�

(gij(0, 0) + gij(0, 1) + gij(1, 0) + gij(1, 1)),
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and

w̃2i(f (1) + f (2)) =
1

2
gi(0) − 1

2
gi(1)

+
1

4

∑
0≤p<i<�

(gpig (0, 0) + gpig (1, 0)) +
1

4

∑
i<q<�

(giq(0, 0) + giq(0, 1))

− 1

4

∑
0≤p<i<�

(gpig (0, 1) + gpig (1, 1)) − 1

4

∑
i<q<�

(giq(1, 0) + giq(1, 1))

=
1

2
gi(0) − 1

2
gi(1)

+
1

4

∑
0≤p<i<�

(gpig (0, 0) + gpig (1, 0) − gpig (0, 1) − gpig (1, 1))

+
1

4

∑
i<q<�

(giq(0, 0) + giq(0, 1) − giq(1, 0) − giq(1, 1)),

for all i ∈ {0, . . . , � − 1}. The expression for the second order Walsh coefficients is

w̃t =
1

4

∑
c,d∈{0,1}

rc+dgij(c, d) =
1

4
(gij(0, 0) + gij(1, 1) − gij(0, 1) − gij(1, 0)) ,

where, in this case, t = ni + nj for some 0 ≤ i, j < �.

Finally let us prove that the complex Walsh coefficients wt are zero for t �= 0�� , kni, ani+

bnj , with 0 ≤ i, j < � and 1 ≤ k, a, b < n.

The multary representation of t has a zero at all of its loci, except for i0, . . . , iq,

which respectively contain the alleles a0, . . . , aq ∈ {1, . . . , n − 1}. So,

wt = n− �
2

∑
s∈Ωn

rt·sf (2)(s) = n− �
2

∑
s∈Ωn

r
P

j ajsij f (2)(s)

= n− �
2

∑
∀j∀ : bj∈Σ

∑
s∈Ωn∀j∀ : sij

=bj

r
P

j ajbjf (2)(s)

= n− �
2

∑
∀j∀ : bj∈Σ

r
P

j ajbj

∑
s∈Ωn∀j∀ : sij

=bj

( ∑
0≤p,q<�

gpqg (s)

)
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= n− �
2

∑
∀j∀ : bj∈Σ

r
P

j ajbj

[
n�−q

∑
0≤u,v≤q

giuiv(au, bv)

+
∑

0≤u≤q

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜ ∑
0≤p<iu
∀j∀ : p 	=		 ij

∑
c∈Σ

n�−q−1gpig
u
(c, au) +

∑
iu<p<�
∀j∀ : p 	=		 ij

∑
c∈Σ

n�−q−1giup(au, c)

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟

+
∑

0≤m,y<�
∀j∀ : m,y 	=		 ij

∑
c,d∈Σ

n�−q−1gmy(c, d)

⎤⎥⎥⎥⎥⎦
= 0,

using the same arguments as in the first order case. Once the Walsh coefficients are

known, we can immediately compute the normalized epistasis as

ε∗(f) = 1 −
|w0|2 +

∑
0≤i<�

∑
1≤k<n

|wkni|2∑
0≤i<n�

|wi|2

= 1 −
|w0|2 +

∑
0≤i<�

∑
1≤k<n

|wkni|2

|w0|2 +
∑

0≤i<�

∑
1≤k<n

|wkni|2 +
∑

0≤i,j<�

∑
1≤a,b<n

|wani+bnj |2

=

∑
0≤i,j<�

∑
1≤a,b<n

|wani+bnj |2

|w0|2 +
∑

0≤i<�

∑
1≤k<n

|wkni|2 +
∑

0≤i,j<�

∑
1≤a,b<n

|wani+bnj |2

=

∑
0≤i,j<�

∑
1≤a,b<n

|wani+bnj |2∑
0≤i<n�

|wi|2 .

3 Odds and ends

This section generalizes a number of results recently published by Heckendorn and

co-authors about the moments of schema fitness distributions expressed in terms of

Walsh coefficients. We rewrite their results about these summary statistics, which

are restricted to functions on binary strings, to functions on multary strings. We
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also show an application of the results in the context of randomly generated binary

constraint satisfaction problems.

To prove the results about summary statistics, we need generalized versions of the

balanced sum theorems that appeared in section 2 of chapter IV. The proofs that we

present here are significantly shorter than the ones for the binary case. This is due

to a better notation, which we also exploit to elegantly link the partition coefficients

with the complex Walsh coefficients.

3.1 Notations and terminology

The fitness distribution of a schema H = h�−1 . . . h0 ∈ (Σ ∪ {#})� = Σ′� is defined

as the distribution of fitness values of the strings belonging to the schema. The

number of strings generated by schema H is, as usual, denoted by |H|.
The definitions of the functions β and J , first used in chapter IV, section 2, are

trivially extended to multary alphabets:

β(H)i =

⎧⎨⎧⎧⎩⎨⎨0 if hi = # or hi = 0

hi otherwise.

J(H) = {t ∈ Ωn; ∀ 0 ≤ i < � : hi = # ⇒ ti = 0}.

The function α gets a new definition:

α(H) = {t ∈ Ωn; ∀ 0 ≤ i < � : hi = # ⇔ ti = 0}.

3.2 Balanced sum theorems

Corollary IV.18 is called the balanced sum theorem for binary alphabets. Here we

prove it for multary alphabets.

Theorem VI.9 (Balanced sum theorem for multary alphabets). With nota-

tions as before, we have

n�−1∑
x=0

ψj(x) =

⎧⎨⎧⎧⎩⎨⎨0 if j �= 0��
n� otherwise.
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Proof. This follows immediately from lemma VI.5 where the multiplication of the

first row of V n,� with Vn,� yields the first row of n�In,�.

Before proceeding with the balanced sum theorem for hyperplanes, we prove the

following lemma:

Lemma VI.10. If j ∈ J(H) and s ∈ H, then ψj(s) = ψj(β(H)).

Proof. Knowing that ψj(s) =
∏

i r
siji, we consider two cases for hi:

1. hi = #. This implies that ji = 0, and hence 1 = rsiji = rβ(hi)ji .

2. hi �= #. It follows that�� β(hi) = hi = si, and therefore rsiji = rβ(hi)ji.

As a result, ψj(s) =
∏

i r
siji =

∏
i r

β(hi)ji = ψj(β(H)).

Theorem VI.11 (Balanced sum theorem for hyperplanes and multary al-

phabets). Let H ∈ Σ′� be a schema with at least one position containing a #. We

then have ∑
s∈H

ψj(s) =

⎧⎨⎧⎧⎩⎨⎨0 if j �∈�� J(H)

|H|ψj(β(H)) otherwise.

Proof. Let us first assume that j ∈ J(H). Then∑
s∈H

ψj(s) =
∑
s∈H

ψj(β(H)) = |H|ψj(β(H))

by the previous lemma.

To prove that
∑

s∈H ψj(s) = 0 when j /∈// J(H), we proceed as follows. There must

exist at least one position where j takes a value different from 0, and H contains a

#. For notation’s sake, let us assume � − 1 to be such a position.

Observing that∑
s∈H

ψj(s) =
∑
s∈H

s�−1=0

∑
s∈H

s�−1=1

. . .
∑
s∈H

s�−1=n−1

ψj(s),

=
∑
s∈H

s�−1=0

∑
s∈H

s�−1=1

. . .
∑
s∈H

s�−1=n−1

rs�−1j�−1r
P�−2

i=0 siji,
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we only need to rearrange the terms, using the notation H = #Ĥ , to obtain

=
∑
ŝ∈Ĥ

ψĵ( )̂
(
1 + rj�−1 + r2j�−1 + · · · + r(n−1)j�−1

)
= 0.

Finally, we generalize in a straightforward way the hyperplane averaging theorem

for binary alphabets (corollary IV.10) to multary alphabets:

Theorem VI.12 (Hyperplane averaging theorem for multary alphabets).

Let H ∈ Σ′� be a schema with at least one position containing #. Then

f(H) =
1

|H|
∑
x∈H

f(x) = n− �
2

∑
j∈J(H)

ψj(β(H))wj.

Proof.

1

|H|
∑
x∈H

f(x) =
1

|H|
∑
x∈H

n− �
2

n�−1∑
j=0

ψj(x)wj

=
n− �

2

|H|
n�−1∑
j=0

(∑
x∈H

ψj(x)

)
wj

=
n− �

2

|H|
∑

j∈J(H)

(∑
x∈H

ψj(x)

)
wj

=
n− �

2

|H|
∑

j∈J(H)

|H|ψj(β(H))wj

= n− �
2

∑
j∈J(H)

ψj(β(H))wj.

3.3 Partition coefficients revisited

To write the partition coefficients in terms of complex Walsh coefficients, we start

with three lemmas:
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Lemma VI.13. For all schemata H, H ′ ∈ Σ′�, we have

1. H ′ ⊃ H ⇒ α(H ′) ⊂ J(H),

2. for every t ∈ J(H), there exists exactly one H ′ ⊃ H with t ∈ α(H ′).

Proof. To prove the first statement, we observe that t ∈ α(H ′) if and only if h′
i =

# ⇔ ti = 0 for all 0 ≤ i < �. Now hi = # implies h′
i = #, hence ti = 0 for all i, and

hence t ∈ J(H).

To prove the existence of an H ′ for the second statement, we define H ′ by

h′
i =

⎧⎨⎧⎧⎩⎨⎨# if ti = 0

hi if ti �= 0�� ,

for all 0 ≤ i < �. Clearly H ′ ⊃ H . On the other hand, to show that t ∈ α(H ′) we

consider both cases for each ti. If ti = 0, then h′
i = #, by definition. If ti �= 0, then��

hi �= #, and by definition�� h′
i = hi �= #, as required.��

The unicity of H ′ is shown as follows. If ti = 0, then t ∈ α(H ′) implies h′
i = #.

If ti �= 0, then�� hi �= #, as�� t ∈ J(H). Now suppose that h′
i = #. Then t ∈ α(H ′)

implies ti = 0, a contradiction. Hence h′
i �= #, and because�� H ′ ⊃ H , we must have

h′
i = hi.

Lemma VI.14. For all schemata H ∈ Σ′�, we have

J(H) =
⋃

H′⊃H

α(H ′),

where the union is one of disjoint sets.

Proof. First observe that if H ′ ⊃ H , then α(H ′) ⊂ J(H). Next, if t ∈ J(H) then

there exists exactly one H ′ for which t ∈ α(H ′). Finally, we claim that H ′ �=�� H ′′

if and only if α(H ′) ∪ α(H ′′) = ∅. Let t ∈ α(H ′) ∩ α(H ′′), then t ∈ J(H). By the

unicity statement of the previous lemma, we have necessarily H ′ = H ′′. The other

implication is trivial.

Lemma VI.15. For all schemata H, H ′ ∈ Σ′� and strings t ∈ Ωn, we have

H ′ ⊃ H and t ∈ α(H ′) ⇒ ψt(β(H)) = ψt(β(H ′)).
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Proof. Let us check that t · β(H) = t · β(H ′). It suffices to verify that for all i,

tiβ(H)i = tiβ(H ′)i. We consider two cases.

If hi = #, then β(H)i = 0. But because H ′ ⊃ H , we also have h′
i = #, and

β(H ′)i = 0.

If hi �= #, then either�� h′
i = hi or h′

i = #. In the first case, β(H)i = β(H ′)i. In the

second case, ti = 0 because t ∈ α(H ′).

We can now finally present the link between partition coefficients and complex Walsh

coefficients:

Theorem VI.16. For all schemata H ∈ Σ′�, we have

ε(H) = n− �
2

∑
t∈α(H)

ψt(β(H))wt.

Note that in the binary case (n = 2), |α(H)| = 1, and (as all ψt are real-valued) by

lemma IV.14,

ε(H) = 2−
�
2 ψα(H)(β(H))wα(H) = 2−

�
2 (−1)u(β(H))wα(H).

Proof. Starting from the hyperplane averaging theorem, and subsequently applying

lemma VI.14 and lemma VI.15, we obtain

f(H) = n− �
2

∑
t∈J(H)

ψt(β(H))wt

= n− �
2

∑
H′⊃H

∑
t∈α(H′)

ψt(β(H))wt

= n− �
2

∑
H′⊃H

∑
t∈α(H′)

ψt(β(H ′))wt.

The theorem clearly holds for H = Ωn, as ε(Ωn) = f(Ωn), α(Ωn) = {0}, β(Ωn)=0,

ψ0(0) = 1 and w0 = n
�
2 f(Ωn). We can therefore proceed recursively, and assume

that

ε(H ′) = n− �
2

∑
t∈α(H′)

ψt(β(H ′))wt
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for all H ′ � H . Then

ε(H) = f(H) −
∑

H′�H

ε(H ′)

= n− �
2

∑
H′⊃H

∑
t∈α(H′)

ψt(β(H ′))wt −
∑

H′�H

⎛⎝⎛⎛n− �
2

∑
t∈α(H′)

ψt(β(H ′))wt

⎞⎠⎞⎞

= n− �
2

∑
t∈α(H)

ψt(β(H))wt.

3.4 Application: moments of schemata and fitness function

Given a mean µ and a discrete random variable X, the r-th moment of X around

µ is given by

µr = E[(X − µ)r]

=
∑
x∈X

(x − µ)rp(x),

where p(x) denotes the probability of the event x ∈ X. In [32], Heckendorn, Rana

and Whitley compute the moments of the fitness function around the function mean

for functions on binary strings. We follow their line of proof to generalize the follow-

ing result. (As in section 2.4, we write s̃ = n− �
2 ws to avoid including normalization

factors. Note again that µ = w̃0 is the average of f .)

Theorem VI.17. The r-th moment about the function mean in terms of the Walsh

coefficients of the function is given by

µr =
∑

0	=		 ai∈Ωn
a1⊕···⊕ar=0

w̃a1 . . . w̃ar
= n− �r

2

∑
0	=		 ai∈Ωn

a1⊕···⊕ar=0

wa1 . . . war
,

where ⊕ denotes the addition in (Z/nZ)�.
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Proof. In our situation, where all strings are considered equally likely, we have

µr =
1

n�

∑
x∈Ωn

(f(x) − µ)r

=
1

n�

n�−1∑
x=0

⎛⎝⎛⎛n�−1∑
i=1

w̃iψi(x)

⎞⎠⎞⎞r

=
1

n�

n�−1∑
a1=1

· · ·
n�−1∑
ar=1

w̃a1 . . . w̃ar

n�−1∑
x=0

ψa1(x) . . . ψar
(x).

Using the fact that for arbitrary p and q,

ψpψ (x)ψq(x) = ψpψ ⊕q(x),

we obtain

µr =
1

n�

n�−1∑
a1=1

· · ·
n�−1∑
ar=1

w̃a1 . . . w̃ar

n�−1∑
x=0

ψa1⊕···⊕ar
(x).

According to the balanced sum theorem, the inner sum is non-zero only when a1 ⊕
a2 ⊕ · · · ⊕ ar = 0. Therefore,

µr =
1

n�

∑
0	=		 ai∈Ωn

a1⊕···⊕ar=0

w̃a1 . . . w̃ar
n�

=
∑

0	=		 ai∈Ωn
a1⊕···⊕ar=0

w̃a1 . . . w̃ar
.

We also generalize two other theorems of [31]:

Theorem VI.18. The r-th moment of a schema H about the function mean in

terms of the Walsh coefficients of the function is given by

µr =
∑

0	=		 ai∈Ωn

a1⊕···⊕ar∈J(H)

w̃a1 . . . w̃ar
ψa1⊕···⊕ar

(β(H)).
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Proof. As in [31] and in the spirit of the previous proof, we write

µr(H) =
1

|H|
∑
x∈H

(f(x) − µ)r

=
1

|H|
n�−1∑
a1=1

· · ·
n�−1∑
ar=1

w̃a1 . . . w̃ar

n�−1∑
x=0

ψa1⊕···⊕ar
(x).

Applying the balanced sum theorem, we obtain

µr =
∑

0	=		 ai∈Ωn

a1⊕···⊕ar∈J(H)

w̃a1 . . . w̃ar
ψa1⊕···⊕ar

(β(H)).

Theorem VI.19. The r-th moment of a schema H about the mean of the schema

in terms of the Walsh coefficients of the function is given by

µr =
∑

ai∈Ωn\J(H)
a1⊕···⊕ar∈J(H)

w̃a1 . . . w̃ar
ψa1⊕···⊕ar

(β(H)).

Proof. Given that the hyperplane averaging theorem has been generalized to multary

alphabets, the same line of proof as in [31] can be followed.

3.5 Application: summary statistics for binary CSPs

As an application of the above results, we summarize in this section some results of

Schoofs and Naudts [68, 84] related to the use of summary statistics to predict the

problem difficulty that randomly generated binary constraint satisfaction problems

(binary CSPs, e.g. [96]) induce on a GA.

We start by defining a binary CSP as

• a set of variables xi with 0 ≤ i < �,

• a domain or alphabet Σ = {0, . . . , n − 1},

• a subset CijCC ⊂ Σ×Σ for each pair of variables (i, j), with 0 ≤ i < j < �, which

represents a constraint when it differs from the Cartesian product Σ × Σ.
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The goal of a CSP is to assign to the variables xi a value from their domain Σ in

such a way that all constraints are satisfied. Formally, we say that a constraint Cij

is satisfied if and only if (xi, xj) ∈ CijCC . The couple (xi, xj) is then called a valid

assignment. When (xi, xj) /∈// CijCC we say that the assignment (xi, xj) violates the

constraint CijCC . Each element of Σ × Σ that is not in a constraint set is called a

conflict for that constraint.

A typical example of a CSP that can be found in any artificial intelligence textbook,

is the N-queens problem. The objective of this problem is to position N queens

on a chess board of size N in such a way that they cannot attack each other. A

representation for this problem that fits the above definition is the following: let

each row of the board be represented by one variable, and let each variable take the

value of the position of the queen in that row. This representation implicitly assumes

that each queen has to be in a different row, but that is fine because otherwise two

queens would be able to attack each other. The two other classes of constraints have

to be implemented by filling in the constraint tables: (1) no two queens should be

in the same column, and (2) no two queens should be on the same diagonal.

Binary CSP instances can be randomly generated, as we saw in the first chapter;

one possible way is known as model E [54]: select uniformly, independently and with

repetition, pn2�(�− 1)/2 conflicts out of the n2�(�− 1)/2 possible. The parameter p

clearly controls the density of conflicts in the problem instance, which has a serious

effect on the problem difficulty it imposes on a GA: when there are too few conflicts,

the problem is trivially solvable; when there are too many, it becomes rapidly clear

that no solution exists. Interestingly, a phase transition from solvable to unsolvable

can be shown to exist in the limit of an infinite number of variables [109]. In

practice, a mushy region is observed, for some small interval for p, where solvable and

unsolvable instances co-exist, and where the expected number of solutions is close

to 1. Problem instances from this region have been studied in the above mentioned

work, the question being whether the first two moments of the fitness distributions of

low order schemata could be used to predict the number of generations to a solution

of a GA on problem instances with at least one solution.

Because a CSP does not have an explicit fitness function, one is usually constructed
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Figure VI.1: Normal approximation of the fitness distributions of the schemata a# . . . #,

0 ≤ a < 5, for a for a randomly generated instance with 15 variables and an alphabet of

size 5. (a) shows the distributions computed over an initial population, (b) records the

distributions near the end of a typical GA run.

by counting the number of violated constraints. By doing so, we reduce a CSP to a

second order function. Let gij(si, sj) denote the interaction between the positions i

and j, with the respective values si and sj . In a binary CSP, it equals 1 if there is

a conflict between the values on the positions i and j, and 0 otherwise.

Using the material of section 2.4, we are able to compute the first few moments of the

fitness distribution of an arbitrary schema efficiently. Given that for binary CSPs, at

most O(�2) Walsh coefficients are nonzero, we can compute the mean and variance

of the fitness distribution, and the mean of arbitrary schema fitness distributions in

O(�2) time. The variance of arbitrary schema fitness distributions is computed in

O(�4) time.

Figure VI.1(a) shows, for a randomly generated instance with 15 variables and an

alphabet of size 5, that the mean and standard deviation of the distributions of the

schemata a# . . . #, 0 ≤ a < 5, are very close to each other. Near the end of a GA

run (figure VI.1(b)), the overlap is less prominent but still visible in two subsets of

schemata.

The distributions presented in the plot are based on empirical values for mean and

standard deviation, obtained from the population of one typical run. In the case
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of the initial population, these summary statistics correspond closely to the ones

predicted by theorem VI.19, since they are dominated by average fitness strings.

The situation at the end of a run cannot be predicted by the theory of this chapter.

The fact that the distributions overlap shows that not all GA dynamics follow Gold-

berg’s decomposition (section 4, chapter I). It is not clear what building blocks are

in the context of randomly generated CSPs. Still the GA proceeds, albeit slower

than in situations where building blocks can be clearly distinguished, and reaches a

situation where finding the optimum depends on many other factors than the lack

of building blocks only.
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Appendix A

The schema theorem

(variations on a theme)

An open question for a long time in the theoretical study of GAs was whether

there exist subsets other than “Holland schemata” which, under appropriate genetic

operators, behave according to the schema theorem. In [5], Battle and Vose answered

the question positively by proposing schemata based on transformation matrices

connected to isomorphisms of GAs. Their generalization of traditional schemata

preserves the algebraic structure and may be thought of as an explicit example of

the more general definition of a schema considered by Vose [104], who generalized

the notion of schema to arbitrary predicates.

Recall that Holland originally defined a schema as certain linear varieties of strings

(a subset of strings with “similarities” at certain string positions). For example,

considering strings of length four over the binary alphabet, the “similarity” of the

strings 0011, 0001, 1001 and 1011 may be expressed by a schema H ∈ {0, 1, #}4

(H = #0#1), where # is a don’t care character. It is thus clear that schemata

may be used to structurally describe “strong” or “weak” populations with respect

to some given fitness function.

The point of view of Vose in [104] is that a schema is a predicate. Clearly, the

schema H = #0#1 may be considered as the function

H : {0, 1}4 → {true, false}



Appendix A

which behaves according to the rule

H(x) = true ⇔ x matches H = #0#1 at every position not containing #.

Vose proved the schema theorem in this set-up, and applied it to introduce con-

cepts like locality, monotonicity and stability, which allows GAs to be viewed as

constrained random walks. His work also yielded new insights concerning deceptive

problems (we refer the reader to [104] for details).

Although the use of general predicates or subsets of {0, 1}� as schemata has proven

to be a very adequate tool, practical applications require our set-up to be a little

more general.

Indeed, the fitness function on {0, 1}� often associates to strings an experimentally

obtained, measured value, with a certain inherent amount of vagueness and measur-

ing errors. This implies that extreme values for f may never be correctly determined,

but only approximated. If we just wish describe a near optimal set H of length �

binary strings as a solution for some optimization problem, this is of course, not of

great importance. It becomes important, however, if we want to use schemata to

indicate the structural reasons why this set H is optimal.

In fact, due to the experimental vagueness of the fitness value of individual strings,

at best, we will only be able to guess or approximate the likelihood of a string

belonging to H , i.e., one should view H as a fuzzy subset of {0, 1}�.

In the next section we introduce fuzzy schemata, a notion encompassing both tra-

ditional schemata and Vose’s arbitrary predicates. The fuzzy schemata allow to

describe structural information of imprecise data. Moreover, they satisfy a suitable

version of the schema theorem, thus answering the question raised in [34] concerning

the existence of (generalized) schemata possessing this property.

1 A Fuzzy Schema Theorem

Fuzzy subsets generalize ordinary subsets (see for example [15] for more details).

Whereas an ordinary subset H of {0, 1}� partitions {0, 1}� in a “black” and a “white”

zone (the black consisting of the points belonging to H), a fuzzy subset allows for
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1 A Fuzzy Schema Theorem

shades of “grey”, where the shade of a point measures its degree of belonging to H .

Black points are members of H , white points are not, while the other points “more

or less” belong to H . Fuzzy schemata work in essentially the same way: a black

point certainly possesses the “correct” structure, a white one does not, while a grey

point possesses it up to a certain degree.

Let us consider a (finite or infinite) universe Ω — in practice Ω will usually be the

set {0, 1}� of binary strings of length �. A fuzzy schema is a fuzzy subset H of Ω,

i.e., a map H : Ω → [0, 1]. If H only takes the values 0 and 1, we speak of a crisp

schema in Ω. Of course, this just corresponds to the ordinary subset of Ω consisting

of all p ∈ Ω with H(p) = 1. A population is defined to be a multiset P of Ω (hence

repetitions are allowed). We put

|H|P =
∑
p∈P

H(p).

It is clear that |H|P “counts” the elements of P belonging to H . Indeed, if H is a

crisp schema in Ω, then |H|P is just the cardinality |P ∩ H| of the intersection of P

and H , (counting multiplicities, as always).

Consider a fitness function f : Ω → R. For any fuzzy schema H of Ω, we write

fPff (H)=
1

|H|P
∑
p∈P

H(p)f(p)

(putting fPff (H) = 0, if |H|P = 0). If H is a crisp subset of Ω, then

fPff (H) =
1

|P ∩ H|
∑
p∈P

f(p),

i.e., fPff (H) is the average fitness of P ∩ H . In particular, if H = Ω (the constant

function on Ω with value 1), then fPff (H) = fPff (Ω) is the average fitness of the

population P .

Let us consider an evolving population A(t), where the positive integer t may be

viewed as a discrete time parameter. We write m(H, t) = A(t), i.e., m(H, t) is the

“number” of elements of the population “belonging” to H at time t. Indeed, in the

crisp case, m(H, t) = |A(H, t)|, is the cardinality of the set A(H, t) of all p ∈ A(t),

which belong to H .
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Let us also put

f(H, t) =
1

m(H, t)

∑
p∈A(t)

H(p)f(p) = fAff (t)(H).

In particular,

f(Ω, t) =
1

m(Ω, t)

∑
p∈A(t)

Ω(p)f(p) =
1

m(Ω, t)

∑
p∈A(t)

f(p),

where m(Ω, t) = |Ω|A(t).

Note that in the crisp case, f(H, t) is the average fitness of A(H, t).

Let us now fix Ω = {0, 1}� and assume that the population A(t) ⊆ Ω evolves through

the application of genetic operators. Although other operators (like mutation or

inversion) may be taken into account as well, we will only consider selection and

crossover.

The selection operator picks strings in the population A(t) with a probability of

being selected proportional to their fitness. Let us first consider selection separately.

Since m(H, t + 1) =
∑

p∈A(t+1) H(p), it follows for any fuzzy schema H that

E(m(H, t + 1)) =
∑

p∈A(t)

H(p)
f(p)

f(Ω, t)
=

f(H, t)

f(Ω, t)
m(H, t),

where E denotes the expectation operator.

In order to include crossover as well, we have to modify this as follows. Recall that

the crossover operator starts from a string p = p0 . . . p�−1, and selects a second string

q = q0 . . . q�qq −1 and a random crossover site 0 < z < �. It then produces two new

strings, p0 . . . pz−1qz . . . q�qq −1 and q0 . . . qz−1pz . . . p�−1, and replaces p by one of them.

We denote the latter by p ⊗ q.

Moreover, denote by τHτ (p, q) the probability that p ⊗ q belongs to the schema H ,

when crossover is applied to p and q. Then,

τHτ (p, q) =
∑

r∈X(p,q)

H(r)

|X(p, q)| ,

where X(p, q) is the full (multi)set of potential offspring that may be produced by

applying crossover to p and q.
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1 A Fuzzy Schema Theorem

Since the probability πp,qπ of selecting a certain pair (p, q) of strings in A(t) is

πp,qπ =
f(p)

m(Ω, t)f(Ω, t)

f(q)

m(Ω, t)f(Ω, t)
,

we obtain

E(m(H, t + 1)) = m(Ω, t)

∑
p,q f(p)f(q)

(m(Ω, t)f(Ω, t))2

(
(1 − pc)

H(p) + H(q)

2
+ pcτHτ (p, q)

)
,

where pc denotes the probability that crossover occurs.

It thus follows:

Theorem A.1 (The Fuzzy Schema Theorem). For any fuzzy schema H in Ω,

E(m(H, t + 1)) ≥ m(Ω, t)
f(H, t)

f(Ω, t)
(1 − pcα(H, t)) ,

where

α(H, t) =
∑

p

H(p)f(p)

m(H, t)f(H, t)

∑
q

f(q)

m(Ω, t)f(Ω, t)
(1 − τHτ (p, q)).

Let us take a closer look at α(H, t). Consider a stochastic operator F on a finite set

M which, for any (random value) m ∈ M , produces a string F (m) ∈ Ω. If H is a

crisp schema, E(F ∈ H) is the probability of F (m) belonging to H , i.e.,

E(F ∈ H)=
|{m ∈ M ; F (m) ∈ H}|

|M | .

For a fuzzy schema H , it thus makes sense to use

E(H ◦ F ) =

∑
m∈M H(F (m))

|M | .

For example, view p ⊗ q as a stochastic operator (depending on p and q) which

arbitrarily selects a string in X(p, q). Then τHτ (p, q) = E(H ◦ (p⊗q)) is the expected

membership value of p ⊗ q in H .

Since

α(H, t) =
∑

p

H(p)f(p)

m(H, t)f(H, t)

(
1 −

∑
q

f(q)

m(Ω, t)f(Ω, t)
τHτ (p, q)

)
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and f(q)
m(Ω,t)f(Ω,t)

is the probability of selecting q in A(t), it follows that

1 −
∑

q

f(q)

m(Ω, t)f(Ω, t)
τHτ (p, q) = E((1 − H) ◦ (p ⊗ −))

is the expected non-membership value of p⊗q in H for fixed p and random q ∈ A(t).

On the other hand, let us denote by η the selection operator in A(t). Then

E(η = p) =
f(p)∑
p f(p)

since the probability of p being selected in A(t) is proportional to its fitness. If H

is a crisp schema in Ω, it follows for the restriction η|H of η to H that

E(η|H = p) =

⎧⎨⎧⎧⎩⎨⎨0 if p /∈// H

f(p)P
p∈A(H,t) f(p)

if p ∈ H,

the probability of selecting p within H .

It thus makes sense to put

E(η|H = p) =
H(p)f(p)∑

p∈A(H,t) H(p)f(p)
,

for any fuzzy schema H in Ω. With this definition, it follows that

α(H, t) =
∑

p

E(η|H = p)E((1 − H) ◦ (p ⊗ −)),

i.e., α(H, t) may be viewed as the “probability” that the child of any p ∈ A(t) does

not belong to H , provided that p does. This is in accordance with the conclusions

of [104].

Note that if mutation is also applied with probability pm, in each bit, then theorem

A.1 changes to

E(m(H, t + 1)) ≥ m(Ω, t)
f(H, t)

f(Ω, t)
(1 − pcα(H, t)) (1 − pmβ(H, t)) ,

where β(H, t) takes into account the effect of mutation.
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2 The schema theorem on measure spaces

2 The schema theorem on measure spaces

In this section, we describe a “global” approach to the previous set-up, in the non-

fuzzy case. We start from a search space Ω, which is just assumed to be a measure

space (like Rn, for example), and we shift attention from strings of symbols to points

in this space. The fitness function will be an integrable function on Ω, whereas the

crossover operator will be replaced by a suitable, rather general, Ω-valued stochastic

operator (in two variables) on Ω.

In particular, this degree of generality will permit us to take into account the distance

between points in Ω (if it is endowed with a metric), for example, if we want to

produce new points out of them.

Let Ω be a measure space, e.g., Ω = Rn, and consider a measurable subset P of

Ω. We will call P a population in Ω. Let us also consider a bounded, integrable

map f : Ω → R; we call f a fitness function on Ω, if it is positively valued. Let us

fix a measurable subset H ⊆ Ω. We will call H a schema and identify it with its

characteristic function H : Ω → {0, 1}, given by

H(p) =

⎧⎨⎧⎧⎩⎨⎨1 if x ∈ H

0 if x /∈// H.

The map H is integrable.

Fixing the population P for a moment, we put

|H|P =

∫
P

∫∫
H(ω)dω = µ(H ∩ P ),

where µ is the measure map on Ω. Let us also define

fPff (H) =

⎧⎨⎧⎧⎩⎨⎨
1

|H|P
∫

P

∫∫
H(ω)f(ω)dω if |H|P �= 0��

0 if |H|P = 0.

In other words,

µ(H ∩ P )fPff (H)=

∫
H

∫∫
∩P

f(ω)dω.
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If P = A(t) ⊆ Ω is a population, which depends upon some (discrete) parameter t,

then we write

m(H, t) = |H|A(t) =

∫
A

∫∫
(t)

H(ω)dω = µ(H ∩ A(t))

and

f(H, t) = fAff (t)(H),

respectively. If m(H, t) �= 0, we thus obtain��

f(H, t) =

∫
A

∫∫
(t)

H(ω)f(ω)dω∫
A

∫∫
(t)

H(ω)dω
.

Note that in the previous set-up, we did not allow for multiple occurrences of ele-

ments in the population P . If we want to make P into a multiset, we slightly have

to change our point of view, for example by defining P to be an integrable map

P : Ω → R,

all of whose values are positive integers. The value P (x) then represents the number

of occurrences of x ∈ Ω in the population P . Since our results may easily be adapted

to take this feature into account, we will not go into this deeper, leaving details to

the reader instead.

Let us now consider the selection operator η in Ω which picks elements with a

probability proportional to their fitness. Our assumptions imply that η transforms

measurable subsets into measurable subsets and that, up to subsets of measure zero,

if x ∈ Ω is selected, so are points sufficiently close to x.

As

m(H, t + 1) =

∫
A

∫∫
(t+1)

H(ω)dω,

it follows that

E(m(H, t + 1))=
1

f(Ω, t)

∫
A

∫∫
(t)

H(ω)f(ω)dω =
f(H, t)

f(Ω, t)
m(H, t)

where E denotes, as in the fuzzy case, the expectation operator.
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On the other hand, crossover should be an operator which, for every pair of elements

p, q ∈ Ω, returns a new element p ⊗ q ∈ Ω. It will thus be a stochastic operator

χ : Ω × Ω → Ω

which maps measurable subsets onto measurable subsets.

The classical crossover operator on strings (choosing crossover sites randomly) is of

this type. Another example is the operator

χ : Rn × Rn → Rn : (p, q) �→�� αp + (1 − α)q,

where the real random variable α is normally distributed around α0 = 0.5.

We already know that the probability of selecting a particular couple (p, q) ∈ A(t)×
A(t) is given by

f(p)∫
A

∫∫
(t)

f(ω)dω

f(q)∫
A

∫∫
(t)

f(ω)dω
=

f(p)f(q)

(f(Ω, t)m(Ω, t))2
.

Denote by τHτ (p, q) the probability that the output of the crossover operator applied

to the selected pair p and q belongs to H , and assume

τHτ : Ω × Ω → [0, 1] ⊆ R

to be integrable. The probability of obtaining an element in H , starting from any

couple (p, q) ∈ A(t) × A(t), after selection and crossover is thus given by

γ(p, q) = pcτHτ (p, q) +
1 − pc

2
(H(p) + H(q)) ,

where pc is the probability that crossover is applied. It thus easily follows that

E(m(H, t + 1)) = A + B, with

A = p′c
1

f(Ω, t)

∫ ∫
A

∫∫
(t)×A(t)

(H(p) + H(q))f(p)f(q)

m(Ω, t)f(Ω, t)
dp dq,

where p′c = 1−pc

2
, and with

B =
pc

f(Ω, t)

∫ ∫
A

∫∫
(t)×A(t)

τHτ (p, q)
f(p)f(q)

m(Ω, t)f(Ω, t)
dp dq.
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In order to calculate the term A, let us first assume that the following condition is

satisfied:

(∗) the set of discontinuities of the map

A(t) × A(t) → R : (p, q) �→�� (Hf)(p)f(q)

has measure zero.

Here Hf is defined on A(t) by

(Hf)(p) =

⎧⎨⎧⎧⎩⎨⎨f(p) if p ∈ H ∩ A(t)

0 if p /∈// H.

If the set of discontinuities of f has measure zero, in particular, if f is continuous,

then Hf is continuous, except, possibly, on the border of H ∩ A(t) and in the

discontinuity points of f , so (∗) holds.

Clearly,

A = p′c
2

f(Ω, t)

∫ ∫
A

∫∫
(t)×A(t)

H(p)f(p)f(q)

m(Ω, t)f(Ω, t)
dp dq,

and this may be rewritten as

1 − pc

f(Ω, t)

∫
A

∫∫
(t)

H(p)f(p)

(∫
A

∫∫
(t)

f(q)

m(Ω, t)f(Ω, t)
dq

)
dp.

As ∫
A

∫∫
(t)

f(q)

m(Ω, t)f(Ω, t)
dq = 1

and ∫
A

∫∫
(t)

H(p)f(p)dp = f(H, t)m(H, t),

respectively, we find that

A = (1 − pc)
f(H, t)

f(Ω, t)
m(H, t).

The term B may be calculated if we assume that the following condition is satisfied:

(∗∗) the map

A(t) × A(t) → R : (p, q) �→�� f(p)f(q)τHτ (p, q)
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has at most a measure zero set of discontinuities.

With

γA(t)(p, f) =

∫
A

∫∫
(t)

f(q)

m(Ω, t)f(Ω, t)
τHτ (p, q)dq

we obtain that

B =
pc

f(Ω, t)

∫
A

∫∫
(t)

f(p)γA(t)(p, f)dp

≥ pc

f(Ω, t)

∫
A

∫∫
(t)

H(p)f(p)γA(t)(p, f)dp

= pc
m(H, t)f(H, t)

f(Ω, t)

∫
A

∫∫
(t)

H(p)f(p)γA(t)(p, f)

m(H, t)f(H, t)
dp.

Putting θH(p, q) = 1 − τHτ (p, q), we define

γ′
A(t)(p, f) =

∫
A

∫∫
(t)

f(q)

m(Ω, t)f(Ω, t)
θH(p, q)dq

= 1 − γA(t)(p, f).

So,

B ≥ pc
m(H, t)f(H, t)

f(Ω, t)
×
(

1 −
∫

A

∫∫
(t)

H(p)f(p)

m(H, t)f(H, t)
γ′

A(t)(p, f)dp

)
.

Let us now assume that both conditions (∗) and (∗∗) are satisfied. Combining the

previous calculations, we then finally obtain:

Theorem A.2 (The “global” schema theorem). With the above notations, we

have

E(m(H, t + 1)) ≥ m(H, t)
f(H, t)

f(Ω, t)
(1 − pcα(H, t)) ,

with

α(H, t) =

∫
A

∫∫
(t)

H(p)f(p)

m(H, t)f(H, t)
γ′

A(t)(p, f)dp.

The latter term may be viewed (like in the fuzzy case) as the “probability” that no

offspring of elements belonging to H belongs to H , through the action of crossover,

i.e., the probability that no child produced by crossing an element of H ∩ A(t) and

of A(t) belongs to H .
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It has been proved that, for the crossover operator mentioned before, α(H, t) takes

small values.

Let us conclude by noting that if we allow mutation, say with probability pm, then

a similar argument as the previous one yields a somewhat more general schema

theorem, which states that

E(m(H, t + 1)) ≥ m(H, t)
f(H, t)

f(Ω, t)
(1 − pcα(H, t) − pmβ(H, t)) ,

for a suitable function β(H, t), which depends upon the population A(t) and struc-

tural information contained in H . We leave further details to the reader.
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Algebraic background

The main purpose of this appendix is to briefly recollect some of the algebraic

background that has been used throughout the text. As most of the material in-

cluded below is amply documented in the literature, no proofs have been included.

Moreover, to most readers, what follows will essentially be “standard” mathematics

and may thus be viewed as a quick refresher.

1 Matrices

1.1 Generalities

A matrix is any rectangular array

A =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
a11 · · · a1n

...
. . .

...

am1 · · · amn

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ = (aij)

of elements called coefficients. These may belong to any set A whatsoever, but are

usually real or complex numbers or matrices themselves. We endow the coefficients

of A with double subscripts, the first one denoting the (horizontal) row and the

second one the (vertical) column in which the coefficient is located.

Note that for convenience’s sake, we will sometimes start numbering the rows from

0 to m − 1 and the columns from 0 to n − 1.
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If all coefficients are chosen within a fixed set A, which we then call the set of scalars,

we denote by MmMM ×n(A) the set of m × n matrices with coefficients in A, i.e., with

m rows and n columns. If m = n, then we speak of square matrices of dimension n

and the set of these is denoted by MnMM (A).

A matrix

a =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
a11

...

am1

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
a1

...

am

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
is sometimes referred to as a vector. In particular, the columns

aj =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
a1j

...

amj

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
(j = 1, . . . , n) of any m × n matrix A are vectors and we will frequently write

A = (a1 . . .an).

Similarly, if

bi =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
ai1

...

ain

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
(i = 1, . . . , m), then we may write

A =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
tb1

...
tbm

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

Here t(−) is the so-called transposition, which is defined by associating to any A =

(aij) ∈ MmMM ×n(A) the matrix tA = (aji) ∈ MnMM ×m(A).

For example,

t

(
1 2 3

4 5 6

)
=

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
1 4

2 5

3 6

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .
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Note that we, obviously, always have t(tA) = A.

A (necessarily square) matrix A with tA = A is called symmetric.

From now on, we will always assume coefficients to be chosen in R, the field of real

numbers, or C, the field of complex numbers.

We may then define the sum of two m × n matrices A = (aij) and B = (bij) by

A + B = (aij + bij).

Since this addition of matrices has been defined in terms of the addition of the

coefficients, one easily verifies:

Proposition B.1. Within the set of m × n matrices, we have:

1. A + B = B + A,

2. A + (B + C) = (A + B) + C,

3. the matrix O with all entries equal to zero has the property that for any matrix

A we have

A + O = A,

4. for each matrix A, there exists another matrix −A = (−aij) such that

A + (−A) = O.

In a similar way, one may define the product rA of a matrix A and a scalar r by

putting rA = (raij).

The following result lists the basic properties of this operation:

Proposition B.2. Let A and B be m × n matrices and let r, s be scalars. Then:

1. r(A + B) = rA + rB,

2. (r + s)A = rA + sA,

3. (rs)A = r(sA),

4. 1A = A,
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5. t(rA) = r(tA).

Next, let us define the product of an m × n matrix A and an n × p matrix B to be

the m × p matrix C = (cik), with

cik = ai1b1k + · · · + ainbnk =
n∑

j=1

aijbjkb ,

for any 1 ≤ i ≤ m and 1 ≤ k ≤ p. Note that this product is non-commutative, as

the following example shows.

Example B.3. Let A =

(
0 1

−2 1

)
and B =

(
1 4

−2 1

)
, then

AB =

(
−2 1

−4 −7

)
while BA =

(
−8 5

−2 −1

)
.

On the other hand, let us point out that the product of matrices satisfies the fol-

lowing basic properties:

Proposition B.4. Let A, B and C be matrices (with suitable dimensions) and

denote by In the identity matrix of dimension n, i.e.,

(In)ij =

{
0 if i �=�� j

1 if i = j.

Then:

1. A(BC) = (AB)C,

2. A(B + C) = AB + AC,

3. (B + C)A = BA + CA,

4. r(AB) = (rA)B = A(rB),

5. if A has dimension m × n and B has dimension n × p, then AIn = A and

InB = B.
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Finally the Kronecker product or tensor product of an m × n matrix A = (aij) and

a p × q matrix B = (bij) is defined to be the np × mq matrix

A ⊗ B = (aijB)ij =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
a11B · · · a1mB

...
. . .

...

an1B · · · anmB

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

Example B.5. If A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12 b13

b21 b22 b23

)
, then

A ⊗ B =

(
a11B a12B

a21B a22B

)
=

⎛⎜⎛⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎜⎜
a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

⎞⎟⎞⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎟⎟ .

For any m × n matrices A, C and any p × q matrices B, D, it is clear that

t(A ⊗ B) = tA ⊗ tB

and

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

1.2 Invertible matrices

Any square matrix A of dimension n is said to be invertible (or nonsingular) if therer

exists a matrix B (of the same dimension) such that AB = BA = In. The matrix

B is then necessarily unique. It is called the inverse of A and is denoted by A−1.

Note that if AB = In and CA = In, then A is invertible and B = C = A−1.

The main properties of the inverse of matrices are given by:

Proposition B.6. For any pair of invertible matrices A and B and any non-zero

scalar r, we have

1. (A−1)−1 = A,

2. (AB)−1 = B−1A−1,
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3. (rA)−1 = 1
r
A−1,

4. t(A−1) = (tA)−1.

Let us briefly recall the definition of the determinant of any square matrix A. If

A =

(
a11 a12

a21 a22

)
is a square matrix of dimension 2, we define its determinant by

det(A) = a11a22 − a12a21.

For higher dimensions, we work by induction. If A is any square matrix of dimension

n, the minor of the coefficient aij is the determinant of the submatrix obtained by

deleting row i and column j from A. The cofactor Aij of aij is the minor of aij

multiplied by (−1)i+j. With these definitions, the determinant of A is now defined

by

det(A) = ai1Ai1 + . . . + ainAin =

n∑
j=1

aijAij .

One may show that the value of this expression does not depend on the choice of i;

it is sometimes referred to as the Laplace expansion of the determinant of A by the

i-th row. It is also easy to see that the same value is obtained if, for any 1 ≤ j ≤ n,

we expand by the j-th column, i.e.,

det(A) = a1jA1j + . . . + anjAnj =
n∑

i=1

aijAij.

The main properties of determinants are given by the following result:

Proposition B.7. Let A and B be square matrices. Then:

1. det(A) = det(tA),

2. If A = (aij) is any n × n upper (or lower) triangular matrix, i.e., if aij = 0 if

i > j (or aij = 0 when i < j), then

det(A) = a11a22 . . . ann =
n∏

i=1

aii,
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3. det(In) = 1,

4. det(AB) = det(A) det(B).

Define the adjoint matrix adj(A) of any square matrix A = (aij) by

adj(A) =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
A11 . . . An1

...
. . .

...

A1n . . . Ann

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ ,

where, as before, Aij is the cofactor of aij .

Proposition B.8. For any square matrix A we have:

1. A is invertible if, and only if, det(A) �= 0�� ,

2. in this case,

A−1 =
1

det(A)
adj(A).

1.3 Generalized inverses

It is clear that not every matrix A is invertible, in particular if it is an m×n matrix

with m �=�� n. However, one may still try and introduce an “approximate” inverse of

A. Such a generalized inverse or Moore-Penrose inverse of A is defined to be an

n × m matrix X, with the properties that

1. AXA = A,

2. XAX = X,

3. both AX and XA are symmetric.

One may show that any m × n matrix A has a generalized inverse and that this

generalized inverse is then necessarily unique. We will denote it by A†. Its main

properties are given by:

Proposition B.9. Let A be an arbitray m × n matrix and b a vector of dimension

m. Then:
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1. the linear system Ax = b has A†b as a solution, whenever solutions exist,

2. if A is invertible, then A† = A−1.

2 Vector spaces

2.1 Generalities

A non-empty set V is said to be a (real) vector space if it is endowed with two

operations: a sum, which to any v, w ∈ V associates some v + w ∈ V and a scalar

product , which to any real number α and any v ∈ V associates some αv ∈ V , these

operations satisfying:

1. for any u,v and w in V , we have u + v = v + u and (u + v) + w = u + (v + w),

2. there is a some o ∈ V such that o + v = v for any v ∈ V , moreover, for any

v ∈ V , there exists −v ∈ V such that v + (−v) = o,

3. for any pair of real numbers α and β and any v, w ∈ V , we have α(v + w) =

αv + αw resp. (α + β)v = αv + βv and (αβ)v = α(βv),

4. if v ∈ V , then 1v = v.

The elements of V are called vectors, in particular, o is called the zero vector, the

elements of R, the field of real numbers, are usually referred to as scalars.

Example B.10. It is easy to see that the set Rn = {(x1, . . . , xn), xi ∈ R} is a vector

space, when endowed with the operations

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

and

α(x1, . . . , xn) = (αx1, . . . , αxn).

Note that we will frequently view the elements of Rn as (column) vectors

x =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
x1

...

xn

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .
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In a similar way, when endowed with the obvious operations, the set of m × n

matrices MmMM ×n(R) is a vector space as well.

One easily verifies that for any vector v and any scalar α, one has 0v = o and αo = o.

Actually, one may show that αv = o exactly when v = o or α = 0.

A non-empty subset U of V is said to be a subspace of V if it is a vector space, when

endowed with the operations of V . This is clearly equivalent to asserting that for

any pair of vectors v, w in U and any pair of scalars α, β, the vector αv + βw also

belongs to U .

Using this, one easily checks that for any m × n matrix A, the set of solutions of

the linear system defined by A, i.e., the set

{x ∈ Rn, Ax = 0}

is a a subspace of Rn. Actually, one may show that every subspace of Rn is of this

form.

For any pair of subspaces U , U ′ ⊂ V , define their sum U + U ′ by

U + U ′ = {u + u′; u ∈ U, u′ ∈ U ′}.

We then have:

Proposition B.11. Let U and U ′ be subspaces of the vector space V . Then U ∩ U ′

and U + U ′ are also subspaces of V .

When U ∩ U ′ = {o} and U + U ′ = V , we say that V is the direct sum of U and U ′

and we write this as V = U ⊕ U ′.

2.2 Linear independence, generators and bases

Let us fix a vector space V . Consider vectors v1, . . . , vn ∈ V and scalars α1, . . . , αn.

The vector

v = α1v1 + . . . + αnvn =

n∑
i=1

αivi

is then said to be a linear combination of v1, . . . , vn.
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A subset of V is said to be linearly independent if, for any vectors v1, . . . , vn belonging

to S, it follows from

α1v1 + . . . + αnvn = o

that α1 = · · · = αn = 0. It is fairly easy to see that S is linearly independent if no

vector of S can be expressed as a linear combination of the remaining vectors of S.

If S is not linearly independent, then we call it linearly dependent . This means that

we may find scalars α1, . . . , αn not all zero and vectors v1, . . . , vn in S, such that

α1v1 + . . . + αnvn = o;

equivalently, there exists a vector in S which may be written as a linear combination

of the other vectors in S.

The rank of S is denoted by rk(S) and defined to be the maximal number of linearly

independent vectors in S. Some of the main properties of this notion are given in

the following result:

Proposition B.12. Consider vectors v1, . . . , vn in the vector space V and a scalar

α. Then:

1. rk({v1, . . . , vi, . . . , vj , . . . , vn}) = rk({v1, . . . , vj, . . . , vi, . . . , vn}),

2. rk({v1, . . . , vi, . . . , vn}) = rk({v1, . . . , αvi, . . . , vn}) if α �= 0�� ,

3. rk({v1, . . . , vi, . . . , vj , . . . , vn}) = rk({v1, . . . , vi + αvj , . . . , vj , . . . , vn}).

Note also:

Lemma B.13. For any m × n matrix

A = (a1 . . .an) =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
tb1

...
tbm

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
we have:

rk({a1, . . . , an}) = rk({b1, . . . , bm}).
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This common value is called the rank of the matrix A and is denoted by rk(A).

The rank of A is not modified when elementary operations are applied to A, like

interchanging two rows (or columns), multiplying a row (or column) by a non-zero

scalar, or adding to any row (or column) a multiple of another one.

Note also:

Proposition B.14. A square matrix A of dimension n is invertible if, and only if,

rk(A) = n.

For any subset S of V , we denote by 〈S〉 the set of all linear combinations of the

vectors of S, i.e., 〈S〉 consists of all vectors of the form α1v1 + . . . + αnvn, for some

vectors v1, . . . , vn belonging to S and some scalars α1, . . . , αn. It is easy to see that

〈S〉 is a subspace of V and that it is actually the smallest subspace of V containing

S. If V = 〈S〉, then we say that S is a set of generators of V ; if a finite set of

generators exists, then we call V finitely generated.

The columns a1, . . . , an of any m × n matrix A are vectors in Rm. The subspace

generated by these is called the range of A and will be denoted by Im(A). It is easy

to see that Im(A) does not change when elementary operations are applied to A.

Note also:

Proposition B.15. If {v1, . . . , vn} is a set of generators of V and if vi is a linear

combination of the remaining vectors, then the set

{v1, . . . , vi−1, vi+1, . . . , vn}

is also a set of generators of V .

The next result links generators to linear independency:

Proposition B.16. If the set {v1, . . . , vm} is linearly independent and if {u1, . . . , un}
is a set of generators, then m ≤ n.

A linearly independent set of generators of V is said to be a basis.

Proposition B.17. A subset B = {e1, . . . , en} of the vector space V is a basis

if, and only if, each vector v of V can be expressed in a unique way as a linear

combination of the vectors of B.
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In this case, the uniquely determined scalars v1, . . . , vn with

v = v1e1 + . . . + vnen

are called the coordinates of v with respect to B. We will also write

v =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
v1

...

vn

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
and call this the coordinate vector of v (with respect to B).

It is easy to see that if V is finitely generated, say V = 〈S〉 for some finite set S,

then V possesses a basis B ⊂ S.

Note also:

Theorem B.18. If V has a finite basis B, then any other basis of V has the same

cardinality as B.

In view of the previous result, it makes sense to define the dimension of a finitely

generated vector space V , denoted by dim(V ), to be the cardinality of any basis of

V .

Example B.19.

1. If V = 〈S〉 with S a finite set, then, obviously, dim(V ) = rk(S),

2. it is clear that the vector space Rn has dimension n, since the vectors

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}

form a basis for Rn (we will usually call this the canonical basis of Rn),

3. consider in MmMM ×n(R), the matrices Eij, which have 1 at the intersection of

row i and column j and 0 in the other positions; then

{Eij ; i = 1, . . . , m, j = 1, . . . , n}

is a basis for MmMM ×n(R), hence dim(MmMM ×n(R)) = mn.
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2 Vector spaces

The following result is sometimes referred to as the “dimension formula”:

Proposition B.20. For any pair of subspaces U and U ′ of the vector space V we

have:

dim(U) + dim(U ′) = dim(U + U ′) + dim(U ∩ U ′).

Let us now suppose that both B = {e1 . . . , en} and B′ = {e′1, . . . , e′n} are bases of

V . Then we may find scalars sij , such that for each 1 ≤ j ≤ n we have

e′j = s1je1 + . . . + snjen =

n∑
i=1

sijei.

Since any vector v may be written uniquely as

v =
n∑

i=1

viei =
n∑

j=1

v′
je

′
j,

it easily follows that these coordinates are linked through vi =
∑n

j=1 sijv
′
j , i.e.,⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

v1

...

vn

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ =

⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜
s11 . . . s1n

...
. . .

...

sn1 . . . snn

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟
⎛⎜⎛⎛⎜⎜⎜⎝⎜⎜

v′
1
...

v′
n

⎞⎟⎞⎞⎟⎟⎟⎠⎟⎟ .

The matrix (sij) is usually denoted by SB,B′ (or just S, if no ambiguity arises) and

referred to as the substitution matrix for B and B ′. Its columns are exactly the

coordinate vectors of the e′j with respect to the basis B. If we denote by v resp. v′

the coordinate vector of any v ∈ V with respect to the basis B resp. B ′, then the

previous relation may thus be rewritten as v = SB,B′v′.

It is easy to see that the matrix SB,B′ is invertible. Conversely, if S = (sij) is

an invertible matrix, then it yields for any basis B = {e1 . . . , en} of V a new basis

B′ = {e′1, . . . , e′n} by putting e′j =
∑n

i=1 sijei for any 1 ≤ j ≤ n, as one easily verifies.

2.3 Euclidean spaces

A symmetric bilinear form on the vector space V , i.e., a map

〈−,−〉 : V × V → R
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with the property that 〈αu + βv, w〉 = α 〈u, w〉 + β 〈v, w〉 and that 〈u, v〉 = 〈v, u〉
for any u, v, w ∈ V and any scalars α, β, is said to be a scalar product , if 〈v, v〉 is

positive, for any v ∈ V and if 〈v, v〉 = 0 if, and only if, v = 0.

Let us assume for the rest of this section V to be a Euclidean space, i.e., to be

endowed with a scalar product. We then define the norm of any v ∈ V as

||v|| =
√

〈v, v〉.

From the properties of the scalar product, it follows that the norm only takes positive

values and that ||v|| = 0 if, and only if, v = 0.

Vectors v and w are said to be orthogonal if 〈v, w〉 = 0. A set {e1, . . . , en} is said to

be an orthogonal basis if it is a basis and if ei and ej are orthogonal for any i �=�� j.

If we also have ||ei|| = 1 for each i, then we speak of an orthonormal basis.

Proposition B.21. Let S be a square matrix of dimension n. The following asser-

tions are equivalent:

1. S−1 = tS or, equivalently, tSS = In,

2. the map

fSff : Rn → Rn : x �→�� Sx

has the property that 〈fS(x), fSff (y)〉 = 〈x, y〉 for any x, y ∈ Rn,

3. the columns {s1, . . . , sn} of S form an orthonormal basis for Rn,

4. the rows {t1, . . . , tn} of S form an orthonormal basis for Rn,

5. S = SB,B′ for a pair of orthonormal bases B, B ′ of an n-dimensional Euc-

lidean vector space.

For any subset U of V , we denote by

U⊥ = {v ∈ V ; ∀u ∈ U, 〈u, v〉 = 0}

its so-called orthogonal complement . Note that this is always a subspace of V , even

if U is not.

It is easy to see that:
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Proposition B.22. For any subspace U of V , we have:

1. V = U ⊕ U⊥,

2. if V = U ⊕ U ′, then U ′ = U⊥.

3 Linear maps

3.1 Definition and examples

A map f : V → W between vector spaces V and W is said to be linear , if it has the

property that f(v + v′) = f(v) + f(v′) and f(αv) = αf(v), for any vectors v, v′ ∈ V

and any scalar α. Clearly this is equivalent to f(
∑n

i=1 αivi) =
∑n

i=1 αif(vi), for any

vectors vi ∈ V and scalars αi.

Example B.23.

1. The zero map f : V → W , which assigns to any v ∈ V the zero vector in W ,

is a linear map,

2. the identity idV : V → V is a linear map,

3. for any m × n matrix A, the map

fAff : Rn → Rm : x �→�� Ax

is linear.

The kernel Ker(f) and the image Im(f) of any linear map f : V → W are defined

by

Ker(f) = {v ∈ V ; f(v) = o}
and

Im(f) = {w ∈ W ; ∃v ∈ V, f(v) = w}.
Clearly, Ker(f) is a subspace of V and Im(f) a subspace of W . The rank rk(f) of

f is defined to be the dimension of Im(f).

These notions are related through:
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Proposition B.24. For any linear map f : V → W between finite-dimensional

vector spaces, we have

dim(V ) = dim(Ker(f)) + rk(f).

Note also:

Lemma B.25. If f : V → V is a linear map, then f 2 = f if, and only if, V =

Ker(f) ⊕ Im(f).

3.2 Linear maps and matrices

Let f : V → W be a linear map with dim(V ) = n and dim(W ) = m and consider a

basis B = {e1, . . . , en} of V and a basis C = {f1, . . . , fmff } of W . For each vector ei

in B, we may write

f(ei) =

m∑
j=1

ajifjff .

We thus obtain a matrix A = (aji), which we call the matrix of f with respect to

B and C, and which completely determines f , once B and C are given. Indeed, for

any v ∈ V with coordinate vector v with respect to B, the coordinate vector of f(v)

with respect to C is exactly Av.

Note also:

Lemma B.26. If A is the matrix associated to the linear map f : V → W (with

respect to given bases B and C), then rk(f) = rk(A).

The next result describes how base change affects the matrix associated to a linear

map:

Proposition B.27. Consider a linear map f : V → W , bases B and B ′ for V , bases

C and C ′ for W and let A (resp. A′) be the matrix associated to f with respect to

B and C (resp. with respect to B ′ and C ′). Then

A′ = SC′,CASB,B′ ,

where SB,B′ is the substitution matrix for B and B ′ and SC′,C = S−1
C,C′ is the sub-

stitution matrix for C ′ and C.
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3.3 Orthogonal projections

Assume V = V1VV ⊕ V2VV for subspaces V1VV and V2VV of V . Then any vector v ∈ V may be

written in a unique way as v = v1 + v2, with v1 ∈ V1VV and v2 ∈ V2VV . The linear map

p : V → V : v �→�� v1

is said to be the projection on V1VV along V2VV .

The next result gives an alternative description of projections:

Proposition B.28. For any linear map p : V → V , the following assertions are

equivalent:

1. there exist subspaces V1VV and V2VV of V such that p is the projection on V1VV along

V2VV ,

2. the map p is idempotent (p(( 2 = p).

Let us now assume V to be a Euclidean vector space. In this case, any subspace U

of V has a unique orthogonal complement U⊥, hence determines the projection on

U along U⊥. We denote this map by pU and call it the orthogonal projection of V

on U .

Orthogonal projections may also be described as follows:

Proposition B.29. Let V be a Euclidean vector space. For any linear map p : V →
V the following assertions are equivalent:

1. there exists a subspace U of V such that p = pU ,

2. the matrix associated to p with respect to any orthogonal basis of V is idem-

potent and symmetric.

Note also:

Proposition B.30. Let p : V → V be a linear map. If U is a subspace of V with

the property that p(u) = u for any u ∈ U and p(u) = o for any u ∈ U⊥, then p = pU .

From this it follows:

277



Appendix B

Corollary B.31. For any matrix A, the product AA† is the orthogonal projection

on Im(A).

Indeed, it suffices to note that AA†x = x for any x ∈ Im(A) and AA†x = 0 for

any x ∈ Im(A⊥), and to apply the previous result to f
AA

f † .

4 Diagonalization

As pointed out before, to any matrix A ∈ MnMM (R), we may associate the linear map

fAff : Rn → Rn : x �→�� Ax,

with respect to the canonical basis of Rn. The matrix of f with respect to another

basis B of Rn is of the form S−1AS (where S is the corresponding substitution

matrix). The matrices A and S−1AS are said to be similar .

In this section, we will take a look at the question whether any matrix A is similar

to a diagonal matrix or, equivalently, whether there exists a basis B of Rn such that

the matrix associated to fAff with respect to B is a diagonal matrix.

4.1 Eigenvalues and eigenvectors

Let us fix a vector space V and a linear map f : V → V . A scalar λ is an eigenvalue

of f if f(v) = λv for some nonzero vector v ∈ V , which is then said to be an

eigenvector of f associated to the eigenvalue λ. We call the set

VλVV = {v ∈ V ; f(v) = λv},

which consists of the zero vector and all eigenvectors associated to λ, the eigenspace

associated to λ.

One easily verifies the following result:

Proposition B.32. Let A be the matrix of the linear map f : V → V with respect

to any basis of the n-dimensional vector space V , and let idV denote the identity

function on V . For any λ ∈ R, we then have:
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1. VλVV = Ker(f − λidVdd ),

2. dim(VλVV ) = n − rk(A − λIn),

3. λ is an eigenvalue of f if, and only if, det(A − λIn) = 0.

As we saw in the previous result, a scalar λ is an eigenvalue of f if, and only if,

det(A−λIn) = 0. Since det(A−λIn) is a polynomial in λ of degree n, the so-called

characteristic polynomial of f , and since the zeros of this polynomial are exactly the

eigenvalues of f , it follows that f has at most n distinct eigenvalues.

Let us also point out that the characteristic polynomial of f does not depend on the

chosen basis, i.e., similar matrices have the same characteristic polynomial. Indeed,

if B = S−1AS, for some invertible matrix S, then

det(B−λIn) = det(S−1AS−λIn) = det(S−1) det(A−λIn) det(S) = det(A−λIn).

Note B.33. Since we work over the real numbers, the number of eigenvalues of a

matrix may be smaller than the dimension of this matrix (in view of the occurrence

of complex zeroes). For example, the matrix

A =

(
0 1

−1 0

)

has no (real!) eigenvalues, since its characteristic polynomial is

det(A − λI2) = λ2 + 1.

On the other hand, eigenvalues, viewed as zeroes of the characteristic polynomial,

may have multiplicity higher than 1. For example, the matrix

A =

(
1 1

−1 −1

)

has characteristic polynomial

det(A − λI2) = λ2

and this polynomial has a single zero (λ = 0) with multiplicity 2.
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Suppose that f has r distinct eigenvalues λ1, . . . , λr. The algebraic multiplicity αi

of λi is the multiplicity of λi as zero of the characteristic polynomial of f , while the

geometric multiplicity of λi is defined to be

di = dim(VλVV
i
) = n − rk(A − λiIn).

It is easy to see that for each 1 ≤ i ≤ r, we always have 1 ≤ di ≤ αi.

4.2 Diagonalizable matrices

A square matrix A is said to be diagonalizable if it is similar to a diagonal matrix.

Alternatively, we call a linear map f : V → V diagonalizable if there exists a basis

for V with respect to which the corresponding matrix is diagonal.

Let us first point out the following result:

Proposition B.34. A linear map f : V → V is diagonalizable if, and only if, V

possesses a basis consisting of eigenvectors of f .

Note also:

Lemma B.35. The eigenvectors associated to different eigenvalues are linearly in-

dependent.

The next result completely answers the question whether a given linear map or

matrix is diagonalizable:

Proposition B.36. A linear map f : V → V with r eigenvalues λ1, . . . , λr is

diagonalizable if, and only if,

1. α1 + · · · + αr = n,

2. di = αi for every 1 ≤ i ≤ r.

Using the previous results, one now easily proves:

Corollary B.37. Any square matrix of dimension n with n different eigenvalues is

diagonalizable.
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4 Diagonalization

Let us now assume V to be a Euclidean vector space. A linear map f : V → V is

the said to be symmetric if 〈f(u), v〉 = 〈u, f(v)〉 for all u, v ∈ V . It is clear that

this is equivalent to asserting that the matrix associated to f with respect to any

othonormal basis of V be symmetric.

The reason for introducing this notion stems from:

Proposition B.38. Let V be a Euclidean vector space. If f : V → V is a symmetric

linear map, then the characteristic polynomial of f only has real zeroes, i.e., all

eigenvalues of f are real.

We may now conclude with the following fundamental result:

Theorem B.39. (Spectral Theorem) Any symmetric (real) matrix is diagonal-

izable.

Corollary B.40. For any symmetric (real) matrix A we may find an orthogonal

matrix S and a diagonal matrix D such that tSAS = D.
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